SCHEMA NAZIONALE VOLONTARIO «MADE GREEN IN ITALY»

REGOLE DI CATEGORIA DI PRODOTTO (RCP): FORAGGIO A BASE DI ERBA MEDICA

VERSIONE 1.0 VALIDITÀ: GG MM AAAA

Sommario

2	1. Info	ormazioni generali sulla RCP	4
3	1.1.	Soggetti proponenti	4
4	1.2.	Consultazione e portatori di interesse	5
5	1.3.	Data di pubblicazione e di scadenza	5
6	1.4.	Regione geografica	6
7	1.5.	Lingua	6
8	2. Inp	out metodologico e conformità	6
9	3. Rev	visione della PEFCR e informazione di base della RCP	6
10	3.1.	Ragioni per sviluppare la RCP	6
11	3.2.	Conformità con le Linee guida della fase pilota PEF e successive modificazioni	6
12	4. Am	ıbito di applicazione della RCP	7
13	4.1.	Unità funzionale	7
14	4.2.	Prodotti rappresentativi	7
15	4.3.	Classificazione del prodotto (NACE/CPA)	8
16	4.4.	Confini del sistema - stadi del ciclo di vita e processi	8
17	4.5.	Selezione dei tre indicatori di impatto più rilevanti	10
18	4.6.	Informazioni ambientali aggiuntive	10
19	4.7.	Assunzioni e limitazioni	11
20	4.8.	Requisiti per la denominazione «Made in Italy»	11
21	4.9.	Tracciabilità	11
22	4.10.	Qualità del paesaggio e sostenibilità sociale	11
23	5. Inv	rentario del ciclo di vita (Life Cycle Inventory)	12
24	5.1.	Analisi preliminare (Screening step)	12
25	5.2.	Requisiti di qualità dei dati	12
26	Dat	taset specifici dell'azienda	13
27	Dat	ta Needs Matrix (DNM)	15
28	6. Red	quisiti relativi alla raccolta di dati specifici relativi ai processi sotto diretto controllo (di « foregro	und»)16
29	6.1.	Elenco dei dati primari aziendali obbligatori	17
20	Col	tivazione Erha Modica	17

31	Tra	sporto Erba Medica	19		
32	Essiccazione Erba Medica				
33	Packaging				
34	Modellazione dell'energia elettrica				
35		quisiti relativi ai dati generici relativi ai processi su cui l'organizzazione non esercita alcun controllo (di			
36	«backgro	ound») e dati mancanti	22		
37	L'az	ienda ha accesso a informazioni primarie	22		
38	L'az	zienda non ha accesso a informazioni primarie	24		
39	7.1.	Dati mancanti	24		
40	7.2.	Distribuzione	24		
41	7.3.	fase d'uso	25		
42	7.4.	fase di fine vita	25		
43	7.5.	Requisiti per l'allocazione di prodotti multifunzionali e processi multiprodotto	25		
44	8. Ber	nchmark e classi di prestazioni ambientali	25		
45	9. Rep	porting e comunicazione	27		
46	10.	/erifica	27		
47	11. F	Riferimenti bibliografici	27		
48	Allegato	I - Prodotto rappresentativo	28		
49	Allegato	II - Benchmark e classi di prestazioni ambientali	29		
50	Allegato	III - Fattori di normalizzazione	33		
51	Allegato	IV - Fattori di pesatura	35		
52	Allegato	V - Dati di foreground	36		
53	Allegato	VI - Dati di background	37		
54	ALLEGAT	O VII - FORMULA DI ALLOCAZIONE PER I MATERIALI RICICLATI E RECUPERATI (CIRCULAR FOOTPRINT)	38		
55	Allegato	VIII - Informazioni di base sulle scelte metodologiche attuate durante lo sviluppo della RCP	39		
56					

1. INFORMAZIONI GENERALI SULLA RCP

La presente RCP (Regole di Categoria di Prodotto) fornisce i requisiti e le linee guida necessarie alla conduzione di uno studio di Impronta Ambientale di Prodotto funzionale all'ottenimento del Marchio Made Green in Italy previsto dalla Legge n. 221 del 28 Dicembre 2015 per foraggio a base di erba medica (Codice NACE CPA 10.91 - Preparazione per l'alimentazione del bestiame di allevamento", con riferimento ai sottocodici "10.91.10 - Preparazioni per l'alimentazione del bestiame di allevamento, esclusi farina e agglomerati in forma di pellet, di erba medica).

1.1. SOGGETTI PROPONENTI

- 67 Le presenti Regole di Categoria di Prodotto sono proposte da AIFE Associazione Italiana Foraggi Essiccati.
- 68 L'associazione è attiva dal 1958 e raccoglie 30 impianti di trasformazione dislocati in 8 regioni, con una
- 69 produzione annuale di circa 1.000.000 di tonnellate di foraggi ottenuti su una superficie complessiva
- 70 coltivata vicina a 90.000 ettari.

58

- 71 In Europa, dopo la Spagna, l'Italia è il secondo principale produttore di foraggi essiccati e disidratati.
- Il supporto tecnico-scientifico all'elaborazione delle presenti RCP è stato fornito da Alessandro Bosso e Guido Croce.
- 74 Di seguito la tabella riepilogativa dei soggetti proponenti, che rappresentano il 91% del settore (dato 2021).

75 Tabella 1 Soggetti Proponenti

Nome dell'organizzazione	Tipo di organizzazione	Nome
AIFE	Associazione di Categoria – Soggetto proponente	Gianluca Bagnara
AGRIMEDICA SS	Azienda	
AGRO PO SRL	Azienda	
ALBO SARL	Azienda	
CAPACCI ANDREA	Azienda	
F.LLI CARETTI SS	Azienda	
CIDIERRE SRL	Azienda	
CO.I.ME SRL	Azienda	
CONDUZIONI AZIENDE AGRICOLE FORTE SARL	Azienda	
CONSORZIO AGRARIO DI CREMONA SCRL	Azienda	

Nome dell'organizzazione	Tipo di organizzazione	Nome
C.L.T. SCA	Azienda	
EUROFORAGGI SARL	Azienda	
FARINE LAZIALI SA	Azienda	
IL VALLONE SS	Azienda	
LA ROMANA FARINE SRL	Azienda	
LA VITTORIA SRL	Azienda	
L'ERBA DEL PERSICO SRL	Azienda	
LODI VITTORIO E GIANFRANCO SS	Azienda	
MONTEFELTRO FORAGGI SRL	Azienda	
NUCCI DANIELE & C. SRL	Azienda	
NUOVA SANT'ANNA SRL	Azienda	
PACI&PAGLIARI SARL	Azienda	
PUNTO VERDE SS	Azienda	
SAN NICOLO' SS	Azienda	
IMMOBILIARE PADANA SS	Azienda	
SO.PR.E.D. SCA	Azienda	
TRE C. SS	Azienda	
VISENTINI DI MARIO VISENTINI E C. SS	Azienda	

1.2. CONSULTAZIONE E PORTATORI DI INTERESSE

Dove rilevante, la presente RCP è stata modificata sulla base dei commenti ritenuti pertinenti.

1.3. DATA DI PUBBLICAZIONE E DI SCADENZA

83 La data di pubblicazione è il gg mm aaaa, valida fino al gg mm aaaa.

- 84 La stessa scadenza potrebbe essere ridotta qualora venga elaborata una PEFCR relativa alla medesima
- 85 categoria di prodotto.

86 1.4. REGIONE GEOGRAFICA

- 87 Questa RCP è valida per i soli prodotti realizzati in Italia. Ogni studio basato su questa RCP deve specificare
- 88 che la sua validità è limitata ai confini del territorio nazionale.

89 **1.5. LINGUA**

91

100

101

106

90 La lingua adottata per queste RCP è l'Italiano.

2. INPUT METODOLOGICO E CONFORMITÀ

- 92 Queste RCP sono state preparate in conformità con i seguenti documenti:
- European Commission, *PEFCR Guidance document*, Guidance for the development of Product Environmental Footprint Category Rules (PEFCRs), version 6.3, December 14 2017, version 6.3.
- 95 ("PEFCR Guidance");
- 96 PEF Guide (Annex I to Recommendation (2021/2279/EU);
- Regolamento per l'attuazione dello schema nazionale volontario per la valutazione e la comunicazione dell'impronta ambientale dei prodotti, denominato «Made Green in Italy», di cui all'articolo 21, comma 1, della legge 28 dicembre 2015, n. 221.

3. REVISIONE DELLA PEFCR E INFORMAZIONE DI BASE DELLA RCP

3.1. RAGIONI PER SVILUPPARE LA RCP

- Al momento dell'elaborazione e pubblicazione delle presenti RCP non esistono PEFCR europee sui foraggi,
- 103 né RCP italiane.
- 104 Queste RCP si applicano per coloro che vogliano partecipare allo schema Made Green in Italy per la
- categoria di prodotto in esame: foraggi essiccati disidratati, a base di erba medica.

107 3.2. CONFORMITÀ CON LE LINEE GUIDA DELLA FASE PILOTA PEF E 108 SUCCESSIVE MODIFICAZIONI

- 109 Queste RCP sono state sviluppate in conformità con le linee guida PEF, tranne che per quanto riguarda le
- 110 seguenti eccezioni:

- i data set utilizzati non sono i dataset conformi al metodo EF (Environmental Footprint), in quanto tali dataset sono disponibili solo per studi PEF/OEF svolti secondo le PEFCR pubblicate sul sito http://ec.europa.eu/environment/eussd/smgp/PEFCR OEFSR.htm.

4. AMBITO DI APPLICAZIONE DELLA RCP

Queste RCP si applicano per coloro che vogliano partecipare allo schema Made Green in Italy per il prodotto in scopo. I prodotti coperti da queste RCP sono: foraggi disidratati essiccati, prodotti in Italia. Codice CPA: "CPA 10.91 - Preparazione per l'alimentazione del bestiame di allevamento", con riferimento ai sottocodici "10.91.10 - Preparazioni per l'alimentazione del bestiame di allevamento, esclusi farina e agglomerati in forma di pellet, di erba medica" e "10.91.20 - Farina e agglomerati in forma di pellet, di erba medica".

4.1. UNITÀ FUNZIONALE

- L'unità funzionale (UF) è: **1 tonnellata di foraggio a base di erba medica essiccato venduto sfuso o** imballato.
- La Tabella 2 definisce gli aspetti chiave utilizzati per definire l'UF.

Tabella 2 Aspetti chiave della FU

Che cosa?	Foraggio essiccato a base di erba medica per l'alimentazione di bestiame di allevamento.	
Quanto?	1 tonnellata di prodotto essiccato venduto sfuso o imballato	
Quanto bene?	Il prodotto deve rientrare tra i prodotti compresi nella categoria CPA 10.91.10 e 10.91.20	
Per quanto?	Il prodotto proviene da superfici agricole che effettuano fino a tre tagli annuali, successivamente essiccato, ed eventualmente confezionato per la vendita.	

Il flusso di riferimento è la quantità di prodotto necessaria per adempiere alla funzione definita misurata in tonnellate. Tutti i dati quantitativi in ingresso e in uscita raccolti nello studio devono essere calcolati in relazione a questo flusso di riferimento. Si sottolinea che per ottenere un'unità funzionale di prodotto destinato alla commercializzazione, andranno incluse nel calcolo di produzione le perdite di erba medica della fase agricola e di prima lavorazione.

4.2. PRODOTTI RAPPRESENTATIVI

Il prodotto rappresentativo individuato è un prodotto reale che si può acquistare sul mercato italiano. Il foraggio a base di erba medica prodotta in Italia è infatti un prodotto dalle caratteristiche omogenee ed è ottenuto attraverso l'impiego di tecniche di lavorazione e il consumo di materiali molto simili. Pertanto, non è stato necessario ricorrere alla creazione di un prodotto virtuale (ossia di un prodotto con

caratteristiche tecniche ottenute dalla media ponderata su base economica di tutte le tecnologie in circolazione).

139

140

141

4.3. CLASSIFICAZIONE DEL PRODOTTO (NACE/CPA)

142 I prodotti considerati in questa RCP sono i foraggi essiccati disidratati, a base di erba medica.

Il prodotto corrisponde al codice della *Classification of Products by Activity* (CPA): 10.91 - Preparazione per l'alimentazione del bestiame di allevamento, con riferimento ai sottocodici "10.91.10 - Preparazioni per l'alimentazione del bestiame di allevamento, esclusi farina e agglomerati in forma di pellet, di erba medica" e "10.91.20 - Farina e agglomerati in forma di pellet, di erba medica.

147

148

149

150

151

152

153

154

155

156

157

158

159

Tabella 3: Codice CPA/NACE per il prodotto

10.91 Preparazione per l'alimentazione del bestiame di allevamento	
10.91.10 Preparazioni per l'alimentazione del bestiame di allevamento,	Incluso
esclusi farina e agglomerati in forma di pellet, di erba medica	
10.91.20 Farina e agglomerati in forma di pellet, di erba medica	Incluso

In termini di fatturato, i prodotti considerati rappresentano circa il 90% della produzione totale del codice CPA 10.91.

4.4. CONFINI DEL SISTEMA - STADI DEL CICLO DI VITA E PROCESSI

I confini di sistema delle presenti RCP sono dalla culla al cancello e la distribuzione (from cradle to gate with options) in quanto il prodotto è un semilavorato utilizzato per la mangimistica del bestiame di allevamento e non un prodotto finito, pertanto vengono escluse le fasi di utilizzo e fine vita.

I processi descritti in Tabella 4: Fasi del ciclo di vita dei prodotti rappresentativi e breve descrizione dei processi devono essere considerati all'interno dei confini del sistema.

Tabella 4: Fasi del ciclo di vita dei prodotti rappresentativi e breve descrizione dei processi

FASE DEL CICLO DI VITA	PROCESSI INCLUSI		
Coltivazione Erba Medica	 Produzione dei concimi e diversi trattamenti Trasporto dei concimi e trattamenti dal fornitore al produttore agricolo Emissioni dirette in atmosfera Consumo di gasolio 		
Trasporto Erba Medica	 Trasporto dell'erba medica dal luogo di coltivazione all'impianto di essiccazione 		
Essiccazione Erba Medica	 Produzione energia elettrica Produzione e combustione di metano ed altri combustibili Produzione Materiali Ausiliari 		
Packaging	 Produzione del packaging Trasporto del packaging dal fornitore allo stabilimento produttivo 		
Distribuzione • Trasporto del semilavorato ai principali mercati di destinazione			

Di seguito viene descritto (mediante diagramma in Figura 1) più precisamente il processo produttivo del foraggio essiccato a base di erba medica.

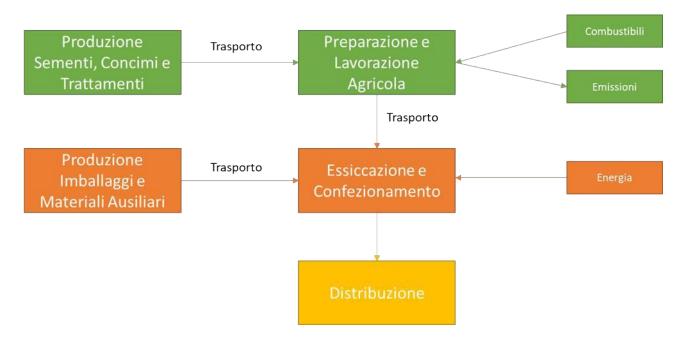


Figura 1: Fasi del ciclo di vita e confini del sistema

All'interno dei confini del sistema, per ognuno dei processi evidenziati, tutti i dati di input/output (ovvero gli input di materia ed energia dei diversi processi e gli output in termini di emissioni, rifiuti solidi, acque reflue) devono essere inclusi al fine di avere una visione completa del sistema di prodotto.

In questa RCP i seguenti processi sono esclusi:

FASE DEL CICLO DI VITA	PROCESSI ESCLUSI	
Produzione	Produzione di infrastrutture e macchinari	Non rilevanti
Uso	Il prodotto viene usato come semilavorato/ingrediente di diversi prodotti destinati all'alimentazione animale	
Fine Vita Scarto del prodotto non utilizzato, imballaggi dei mangimi prodotti da altri settori.		Non applicabile

Figura 2: Processi esclusi dai confini del sistema

171

172

177

178

170

4.5. SELEZIONE DEI TRE INDICATORI DI IMPATTO PIÙ RILEVANTI

- Ogni studio funzionale all'ottenimento del Marchio Made Green in Italy deve calcolare un profilo di indicatori ambientali poi tradotti, a seguito di normalizzazione, pesatura e somma, in un punteggio singolo.
- 175 Il profilo deve contenere i seguenti indicatori:
- 176 Climate Change
 - Particulate matter
 - Resource use, fossils
- La scelta dei tre indicatori è stata effettuata, in fase di studio screening sul prodotto rappresentativo, procedendo con la quantificazione di tutti gli impatti previsti alla raccomandazione 2013/179/EU e dalla PEFCR Guidance v6.3 (EU, 2018). Quelli selezionati risultano essere i 3 più rilevanti a seguito di normalizzazione e pesatura e coprono circa il 50% dell'impatto complessivo.

183

184

4.6. INFORMAZIONI AMBIENTALI AGGIUNTIVE

- Non esistono ad oggi Criteri Ambientali Minimi obbligatori specifici per il prodotto analizzato. Qualora nella produzione delle materie prime agricole ci sia una certificazione di produzione, è possibile aggiungere, anche l'appellativo "biologico" o "da produzione Integrata".
- Le aziende che seguano eventuali standard di sostenibilità devono indicarlo, e devono specificare quale programma è seguito (per esempio, il programma SQNPI del MiPAAF o altre certificazioni) con le relative percentuali di prodotto che ottemperano a tali certificazioni.
- È necessario inoltre riportare informazioni riguardo agli impatti sulla biodiversità generati a livello locale. La biodiversità è già parzialmente considerata in alcune delle categorie d'impatto integrate nell'EF method.
- Vanno segnalate le azioni per il mantenimento e ripristino della biodiversità, messe in atto dalle aziende
- agricole come fasce tampone, siepi fasce ripariali così come la presenza di habitat semi naturali e di zone
- Natura 2000 in termini di % della superficie agricola nei distretti di produzione.
- È importante rilevare che la coltivazione dell'erba medica può generare effetti positivi su alcuni servizi ecosistemici, in particolare lo stoccaggio di carbonio nel suolo, la fertilità del suolo, la protezione dall'erosione e la qualità dell'habitat. A questo proposito, l'erba medica viene utilizzata nelle rotazioni

- 199 colturali come coltura azoto fissatrice. Si suggerisce pertanto la comunicazione all'interno della presente
- 200 RCP di qualunque pratica agricola che possa contribuire a questi servizi ecosistemici. È possibile descrivere
- tali pratiche e gli effetti attesi sia in modo quantitativo che qualitativo.
- 202 In aggiunta, è possibile indicare informazioni aggiuntive riguardo all'impegno dell'impresa agricola in merito
- alla sicurezza e all'igiene, in particolare si segnala che il Manuale di Buone Prassi Igieniche per il settore
- 204 dell'erba medica e dei foraggi essiccati, predisposto da AIFE, prevede requisiti relativi alla Pulizia di
- impianti, locali e attrezzature, alla Manutenzione programmata, alla Gestione di scarti e rifiuti e al Controllo
- degli infestanti. Inoltre è prevista un'analisi dei pericoli e dei rischi in applicazione del sistema HACCP.

4.7. ASSUNZIONI E LIMITAZIONI

207

214

225

229

- Al momento della pubblicazione della presente RCP non è ancora possibile utilizzare le banche dati PEF previste dall'Unione Europea. Ne consegue che gli studi basati sulla presente RCP non possono essere dichiarate studi PEF compliant. Valgono, per questo motivo, le seguenti limitazioni:
- 211 i data set utilizzati non sono i dataset conformi al metodo EF (Environmental Footprint), in quanto
- tali dataset sono disponibili solo per studi PEF/OEF svolti secondo le PEFCR pubblicate sul sito http://ec.europa.eu/environment/eussd/smgp/PEFCR_OEFSR.htm.

4.8. REQUISITI PER LA DENOMINAZIONE «MADE IN ITALY»

- Un prodotto è da considerarsi Made in Italy, in base all'art. 60 del regolamento UE n.952/2013, comma 1 e 2, nei seguenti casi:
- 217 quando le merci sono interamente ottenute in Italia;
- quando le merci alla cui produzione contribuiscono due o più paesi o territori hanno subito in Italia l'ultima trasformazione o lavorazione sostanziale ed economicamente giustificata, effettuata presso un'impresa attrezzata a tale scopo, che si sia conclusa con la fabbricazione di un prodotto nuovo o abbia rappresentato una fase importante del processo di fabbricazione. Fermo restando l'applicazione del codice doganale per la definizione di prodotto Made in Italy, sono da prendere in considerazione, se presenti, norme o regolamenti che declinano le regole del Made in Italy, definendo condizioni specifiche per il settore di riferimento.

4.9. TRACCIABILITÀ

- 226 Ai fini di garantire la tracciabilità dei prodotti e a riprova del rispetto dei requisiti della denominazione
- 227 "Made in Italy", il soggetto richiedente deve produrre un'auto-dichiarazione sul rispetto degli stessi e
- 228 supportata da evidenze documentali atte a dimostrare il loro effettivo rispetto.

4.10. QUALITÀ DEL PAESAGGIO E SOSTENIBILITÀ SOCIALE

- 230 L'erba medica rappresenta una coltura tradizionale e genera effetti positivi sul paesaggio, specie nella
- 231 stagione di fioritura dell'erba medica. Inoltre fornisce un importante contributo agli allevamenti, che hanno
- ricadute socio-economiche importanti a livello locale.

- 233 Dal punto di vista sociale, le aziende che adottano eventuali standard di sostenibilità (per esempio
- certificazioni Global Gap, SA8000/ISO26000) o aderiscano alla Rete del lavoro agricolo di qualità, devono
- indicarlo con le relative percentuali di prodotto che ottemperano a tali certificazioni.

5. INVENTARIO DEL CICLO DI VITA (LIFE CYCLE INVENTORY)

- 237 Il campionamento è ammesso dalla presente RCP secondo i requisiti riportati al capitolo 7.5 della PEFCR
- 238 Guidance v 6.3 e riassunti nell'Allegato VII.

236

242

248

249

250

251

252

253

254

- 239 Nel caso in cui sia necessario il campionamento, deve essere condotto come specificato nella PEFCR
- 240 Guidance v6.3. Tuttavia, il campionamento non è obbligatorio e qualsiasi utente di queste RCP può
- decidere di raccogliere i dati da tutti i produttori fornitori, senza eseguire alcun campionamento.

5.1. ANALISI PRELIMINARE (SCREENING STEP)

- 243 Queste RCP sono basate su uno studio preliminare (screening study) che ha analizzato i dati primari di 89
- aziende agricole socie di AIFE. Lo studio ha avuto luogo tra ottobre 2022 e maggio 2023.
- 245 L'analisi preliminare ha permesso di identificare le fasi più rilevanti ed i processi più significativi rispetto al
- 246 prodotto rappresentativo in questione.
- 247 La fase del ciclo di vita più rilevante risulta essere:

Coltivazione di Erba Medica

I processi più significativi, rispetto ad ogni categoria identificata come rilevante sono:

Tabella 5: Processi più significativi per le categorie di impatto rilevanti

Categoria d'impatto più rilevante	Processi rilevanti	
Climate change	Coltivazione Erba medica	
	Distribuzione del prodotto	
Particulate matter	Coltivazione Erba medica	
	Distribuzione del prodotto	
Resource use, fossils	Coltivazione Erba medica	
	Essiccazione Erba Medica	

5.2. REQUISITI DI QUALITÀ DEI DATI

- La qualità dei dati e delle banche dati e di quella complessiva dello studio PEF deve essere valutata e calcolata e riportata.
- 257 Il calcolo dei requisiti di qualità dei dati (DQR) si basa sulla seguente formula:

$$DQR = \frac{{}^{TeR+GeR+TiR+P}}{4}$$
 [Equazione 1]

- dove TeR è la rappresentatività tecnologica, GeR è la rappresentatività geografica, TiR è la rappresentatività temporale e P è la precisione. La rappresentatività (tecnologica, geografica e temporale) caratterizza fino a che punto i processi ed i prodotti selezionati rappresentano il sistema analizzato, mentre la precisione indica il modo in cui i dati sono ottenuti e il relativo livello di incertezza.
- Per calcolare il DQR complessivo dello studio sull'impronta ambientale di prodotto, l'utente delle RCP deve calcolare separatamente TeR, TiR, GeR e P per lo studio sull'impronta ambientale di prodotto come media ponderata di tutti i processi più rilevanti, in base al loro contributo ambientale relativo al singolo punteggio totale. Devono essere utilizzate le regole di calcolo spiegate nella sezione 4.6.5.8 del metodo PEF.
- I paragrafi successivi forniscono tabelle con i criteri da utilizzare per la valutazione semi-quantitativa di ciascun criterio.

Dataset specifici dell'azienda

270

274

275

276

277

278

279

280

281

282

283

284

285

286

287 288

- 271 Il DQR deve essere calcolato al livello 1 di disaggregazione, prima di eseguire qualsiasi aggregazione di 272 sotto-processi o flussi elementari. Il DQR dei dataset specifici dell'azienda deve essere calcolato come 273 segue:
 - 1) Selezionare i dati di attività più rilevanti e flussi elementari diretti: i dati di attività più rilevanti sono quelli legati a sotto-processi (cioè dataset secondari) che rappresentano almeno l'80% dell'impatto ambientale totale del dataset specifico dell'azienda, elencando in ordine di rilevanza decrescente. I flussi elementari diretti più rilevanti sono definiti come quei flussi elementari diretti che contribuiscono cumulativamente ad almeno l'80% dell'impatto complessivo dei flussi elementari diretti.
 - 2) Calcolare i criteri DQR TeR, TiR, GeR e P per ogni dato di attività più rilevante e ogni flusso elementare diretto più rilevante. I valori di ciascun criterio devono essere assegnati in base alla Tabella 6:
 - a. Ogni flusso elementare diretto più rilevante è costituito dalla quantità e dalla denominazione del flusso elementare (ad esempio 40 g di anidride carbonica). Per ogni flusso elementare più rilevante, l'utente delle RCP deve valutare i 4 criteri DQR denominati TeR-EF, TiR-EF, GR-EF, PEF. Ad esempio, l'utente delle RCP valuta i tempi del flusso misurato, per quale tecnologia è stato misurato il flusso e in quale area geografica.
 - b. Per ogni dato di attività più rilevante, l'utente delle RCP deve valutare i 4 criteri DQR (denominati TiR-AD, PAD, Gr-AD, Ter-AD).

- c. Considerando che i dati per i processi obbligatori devono essere specifici dell'azienda, il punteggio di P non può essere superiore a 3, mentre il punteggio per TiR, TeR e GR non può essere superiore a 2 (Il punteggio DQR deve essere ≤1,5).
- 3) Calcolare il contributo ambientale di ogni dato di attività più rilevante (attraverso il collegamento al sotto-processo appropriato) e il flusso elementare diretto alla somma totale dell'impatto ambientale di tutti i dati di attività più rilevanti e flussi elementari diretti, in % (ponderato, utilizzando tutte le categorie di impatto dell'impronta ambientale). Ad esempio, il dataset di nuova concezione ha solo due dati di attività più rilevanti, che contribuiscono in totale all'80% dell'impatto ambientale totale del dataset:
 - a. I dati dell'attività 1 contribuiscono al 30% dell'impatto ambientale totale del dataset. Il contributo di questo processo sul totale dell'80% è del 37,5% (quest'ultimo è il peso da utilizzare).
 - b. I dati dell'attività 2 contribuiscono al 50% dell'impatto ambientale totale del dataset. Il contributo di questo processo sul totale dell'80% è del 62,5% (quest'ultimo è il peso da utilizzare).
- 4) Calcolare i criteri TeR, TiR, GeR e P del dataset di nuova concezione come media ponderata di ciascun criterio dei dati di attività più rilevanti e flussi elementari diretti. Il peso è il contributo relativo (in %) di ogni dato di attività più rilevante e flusso elementare diretto calcolato nella fase 3.
- 5) L'utente delle RCP calcola la DQR totale dell'insieme di dati di nuova concezione utilizzando l'equazione 2, dove si trova la media ponderata calcolata come specificato al punto (4).

$$DQR = \frac{\overline{Te_R} + \overline{Ge_R} + \overline{T\iota_R} + \overline{P}}{4}$$
 [Equazione 2]

Tabella 6 Come valutare il valore dei criteri DQR per dataset con informazioni specifiche dell'azienda

Classificazione	P _{EF} and P _{AD}	T _{iR-EF} and T _{iR-AD}	Te _{R-EF} and Te _{R-AD}	G_{R-EF} and G_{R-AD}
1	Misurato/calcolato e verificato esternamente	I dati si riferiscono al periodo di amministrazione annuale più recente rispetto alla data di pubblicazione del report EF	I flussi elementari dei dati di attività rappresentano esattamente la tecnologia del dataset di nuova creazione	I dati di attività e flussi elementari riflettono l'esatta geografia dove ha luogo il processo modellato nel dataset creato
2	Misurato/calcolato e verificato internamente, plausibilità verificata dal revisore	I dati si riferiscono a un massimo di 2 periodi di amministrazione annuali rispetto alla data di pubblicazione del report EF	I flussi elementari dei dati di attività sono un'approssimazione della tecnologia del dataset di nuova creazione	I dati di attività e flussi elementari) riflettono in parte l'area geografica in cui si svolge il processo modellato nel dataset creato

Classificazione	P _{EF} and P _{AD}	T _{iR-EF} and T _{iR-AD}	Te _{R-EF} and Te _{R-AD}	G _{R-EF} and G _{R-AD}
3	Misurata / calcolata / letteratura e plausibilità non verificata dal revisore OPPURE Stima qualificata basata su calcoli di plausibilità verificati dal revisore	I dati si riferiscono a un massimo di tre periodi di somministrazione annuali rispetto alla data di pubblicazione del report EF	Non applicabile	Non applicabile
4-5	Non applicabile	Non applicabile	Non applicabile	Non applicabile

 P_{EF} : Precisione dei flussi elementari; P_{AD} : Precisione dei dati delle attività; T_{iR-EF} : Rappresentatività temporale dei flussi elementari; T_{iR-AD} : Rappresentatività temporale dei dati delle attività; T_{eR-EF} : Rappresentatività tecnologica dei flussi elementari; T_{eR-AD} : Rappresentatività tecnologica dei dati delle attività; G_{R-EF} : Rappresentatività geografica dei flussi elementari; G_{R-AD} : Rappresentatività geografica dei dati delle attività.

Data Needs Matrix (DNM)

Tutti i processi richiesti per modellare il prodotto e al di fuori dell'elenco dei dati obbligatori specifici dell'azienda (elencati nella sezione Elenco dei dati primari aziendali obbligatori) devono essere valutati utilizzando la Data Needs Matrix (vedere Tabella 7). L'utente delle RCP deve applicare la DNM per valutare quali dati sono necessari e devono essere utilizzati all'interno della modellazione della sua impronta ambientale di prodotto, a seconda del livello di influenza che l'utente delle RCP (azienda) ha sul processo specifico. I seguenti tre casi si trovano nella DNM e sono spiegati di seguito:

- **Situazione 1**: il processo è gestito dall'azienda che applica le RCP;
- **Situazione 2**: il processo non è gestito dall'azienda che applica le RCP ma l'azienda ha accesso a informazioni specifiche (aziendali);
- **Situazione 3**: il processo non è gestito dall'azienda che applica le RCP e questa azienda non ha accesso a informazioni specifiche (aziendali).

Tabella 7 Data Needs Matrix (DNM) . * Devono essere utilizzati dataset disaggregati.

		Processi più rilevanti	Altri processi
:: processo izienda che le RCP	Opzione 1	Fornire dati specifici dell'azienda (come richiesto nelle RCP) e creare un dataset specifico dell'azienda, in forma aggregata (DQR≤1.5) Calcolare i valori DQR (per ogni criterio + totale)	
Situazione 1 gestito dall'a utilizza l	Opzione 2		Usare dataset secondari predefiniti nelle RCP, in forma aggregata (DQR≤3.0) Utilizzare i valori dei DQR predefiniti

		Processi più rilevanti	più rilevanti Altri processi	
utilizza azienda	Opzione 1	Fornire dati specifici dell'azienda (come richiesto nelle RCP) e creare un dataset specifico dell'azienda, in forma aggregata (DQR≤1.5)		
che	do	Calcolare i valori dei DQR (per ogni criterio + totale)		
Situazione 2: processo <u>non</u> gestito dall'azienda che utilizza e RCP ma con accesso a informazioni specifiche dell'azienda	Opzione 2	Utilizzare i dati di attività specifici dell'azienda per il trasporto (distanza) e sostituire i sotto-processi utilizzati per il mix di elettricità e il trasporto con dataset EF-compliant specifici della catena di fornitura (DQR≤3.0) *		
so <u>non</u> o a infc		Rivalutare i criteri dei DQR nel contesto specifico del prodotto		
Situazione 2: processo e RCP ma con accesso a	Opzione 3		Utilizzare dati di attività specifici dell'azienda per il trasporto (distanza) e sostituire i sotto-processi utilizzati per il mix di elettricità e il trasporto con dataset EF-compliant specifici della catena di fornitura (DQR≤4.0) *	
S e			Utilizza i valori dei DQR predefiniti.	
3: processo <u>non</u> all'azienda che e RCP e senza le informazioni	Opzione 1	Utilizzare il dataset secondario predefinito in forma aggregata (DQR≤3.0)		
3: proce Il'azien RCP e e infori	idO	Rivalutare i criteri dei DQR nel contesto specifico del prodotto		
Situazione 3: processo no gestito dall'azienda che utilizza le RCP e senza accesso alle informazioni	Opzione 2		Utilizzare il dataset secondario predefinito in forma aggregata (DQR≤4.0)	
S G	0		Utilizzare i valori dei DQR predefiniti	

6. REQUISITI RELATIVI ALLA RACCOLTA DI DATI SPECIFICI RELATIVI AI PROCESSI SOTTO DIRETTO CONTROLLO (DI «FOREGROUND»)

Per ogni processo nella situazione 1 ci sono due possibili opzioni:

- Il processo è nell'elenco dei processi più rilevanti come specificato nelle RCP o non è nell'elenco dei processi più rilevanti, ma l'azienda desidera comunque fornire dati specifici dell'azienda (opzione 1);
- Il processo non è nell'elenco dei processi più rilevanti e l'azienda preferisce utilizzare un dataset secondario (opzione 2).

339 Situazione 1/Opzione 1 340 Per tutti i processi eseguiti dall'azienda e in cui l'utente delle RCP applica dati specifici dell'azienda, i DQR 341 del dataset di nuova creazione devono essere valutati come descritto nel paragrafo "Dataset specifici dell'azienda". 342 343 Situazione 1/Opzione 2 344 Solo per i processi che non fanno parte dei più rilevanti, se l'utente delle RCP decide di modellare il 345 processo senza raccogliere dati specifici dovrà utilizzare il dataset secondario elencato nelle RCP insieme ai 346 suoi valori DQR predefiniti elencati. 6.1. ELENCO DEI DATI PRIMARI AZIENDALI OBBLIGATORI 347 Devono essere raccolti dati primari per le seguenti fasi: 348 349 Coltivazione erba medica 350 Trasporto erba medica 351 Essiccazione erba medica 352 Per le fasi per cui si necessitano di dati primari aziendali obbligatori, nel file allegato "Allegato Tecnico RCP 353 Foraggio" è inclusa la lista completa di dati primari da raccogliere e dei dataset predefiniti da utilizzare. 354 **Coltivazione Erba Medica** 355 356 I dati sulla coltivazione devono essere raccolti per un periodo di tempo sufficiente a fornire una valutazione 357 media dell'inventario del ciclo di vita associato agli input e agli output della coltivazione che compenserà le 358 fluttuazioni dovute alle differenze stagionali. In particolare, deve essere utilizzato un periodo di valutazione 359 rappresentativo dei 3-4 anni che viene mantenuto il medicaio (per livellare le differenze nelle rese delle 360 colture legate alle fluttuazioni delle condizioni di coltivazione nel corso degli anni come il clima, i parassiti e 361 le malattie, ecc.). Se i dati che coprono un periodo dei 3 o 4 anni del medicaio non sono disponibili, la 362 valutazione può essere condotta su un periodo più breve, ma non deve essere inferiore a un anno. 363 Per la fase di coltivazione dell'erba medica è necessario raccogliere dati riguardanti: 364 Sementi utilizzati (kg); 365 Consumi di pesticidi (kg); Consumi di fertilizzanti e/o ammendanti (kg); 366

Distanze percorse per mezzo di trasporto utilizzato per la fornitura di sementi, pesticidi, fertilizzanti

Consumi di gasolio per preparazione e lavorazione dei terreni (lt);

367

368 369

o carburanti (km).

Uso di Pesticidi

Le emissioni di pesticidi sono modellate come ingredienti attivi specifici. In base alla metodologia PEF, i pesticidi applicati sul campo sono modellati come il 90% emessi nel comparto del suolo agricolo, 9% emessi nell'aria e 1% emessi nell'acqua.

Uso di Fertilizzanti e/o Ammendanti

Le emissioni di fertilizzanti e/o ammendanti devono essere differenziate come minimo per tipo di fertilizzante e copertura:

- NH3, nell'aria (dall'applicazione di fertilizzanti N)
 - N2O, nell'aria (direttamente e indirettamente) (dall'applicazione di fertilizzanti azotati)
 - CO2, nell'aria (dall'applicazione di calce, urea e composti di urea)
 - NO3, nell'acqua non specificata (lisciviazione dall'applicazione di fertilizzanti N)
 - PO4, in acqua non specificata o in acqua dolce (lisciviazione e deflusso di fosfato solubile dall'applicazione di fertilizzanti P)
 - P, in acqua non specificata o in acqua dolce (particelle di terreno contenenti fosforo, da applicazione di fertilizzante P).

L'ICL per le emissioni di P dovrebbe essere modellata come la quantità di P emessa nell'acqua dopo il deflusso e deve essere utilizzato il comparto di emissione "acqua". Quando questa quantità non è disponibile, l'ICL può essere modellata come la quantità di P applicata sul campo agricolo (attraverso letame o fertilizzanti) e deve essere utilizzato il comparto di emissione "suolo". In questo caso, il deflusso dal suolo all'acqua fa parte del metodo di valutazione dell'impatto.

L'ICL per le emissioni di N deve essere modellata come la quantità di emissioni dopo che lascia il campo (suolo) e finisce nei diversi compartimenti dell'aria e dell'acqua per quantità di fertilizzanti applicati. Le emissioni di N nel suolo non devono essere modellizzate. Le emissioni di azoto devono essere calcolate dalle applicazioni di azoto dell'agricoltore sul campo ed escludendo le fonti esterne (ad esempio la deposizione della pioggia).

Tabella 8 Fattori di Emissione da fertilizzanti/ammendanti

Emissione	Comparto ambientale	Valore da utilizzare
N2O (fertilizzante sintetico e	Aria	0,022 kg N2O/ kg di fertilizzante N
letame; diretto e indiretto)		applicato
NH3 (fertilizzante sintetico)	Aria	kg NH3= kg N * FracGASF= 1*0,1*
		(17/14)= 0,12 kg NH3/ kg
		fertilizzante N applicato
NH3 (letame)	Aria	kg NH3= kg N*FracGASF= 1*0,2*

		(17/14)= 0,24 kg NH3/ kg N concime applicato
NO3 - (fertilizzante sintetico e letame)	Acqua	kg NO3-= kg N*FracLEACH = 1*0.3*(62/14) = 1.33 kg NO3-/ kg N applicato
Fertilizzanti a base di P	Acqua	0,05 kg P/ kg P applicato

399

Trasporto Erba Medica

- 400 Per la fase di trasporto (approvvigionamento) dell'erba medica lavorata, le aziende devono fornire 401 informazioni primarie sui seguenti processi:
- 402 Zona di produzione dell'erba medica;
- 403 Mezzo di trasporto;
 - Distanze percorse per mezzo di trasporto utilizzato (km);
- 405 Quantità di erba medica trasportata (tonnellate).
- Per il calcolo delle distanze percorse per l'approvvigionamento dell'erba medica è necessario considerare il luogo di produzione del prodotto.

408

409

404

Essiccazione Erba Medica

- 410 Per la fase di essiccazione dell'erba medica è necessario raccogliere dati riguardanti:
- 411 Erba medica in ingresso (t);
- Consumi di energia elettrica e termica (kWh e Smc per combustibili gasosi, lt per combustibili liquidi e kg per combustibili solidi);
- 414 Consumi di prodotti ausiliari (kg).
- In questa fase dovrà essere valutato il calo ponderale del prodotto in ingresso dovuto all'essiccazione. In
- 416 particolare, il prodotto essiccato dovrà avere un'umidità del 13%. Pertanto per la quantificazione del
- 417 prodotto in uscita si dovrà utilizzare la seguente formula:
- 418 EMu = EMi * (1-(Ui-Uu))
- 419 Dove:
- 420 EMu = Erba Medica in Uscita
- 421 EMi = Erba Medica in Ingresso
- 422 Ui = Umidità dell'erba medica in ingresso
- 423 Uu = 0,13 (umidità dell'erba medica in uscita)

Packaging

- 426 Per l'uso di packaging è necessario raccogliere dati riguardanti:
- 427 Spago in plastica utilizzato (kg);
 - Filo di ferro utilizzato (kg);
- 429 Sacchi in carta utilizzati (kg).

430

431

434

435

436

437

438439

440 441

442443

444

445

446

447

428

425

Modellazione dell'energia elettrica

- L'energia elettrica utilizzata nello studio per l'essiccazione dell'erba medica deve seguire la gerarchia della PEFCR Guidance, al capitolo 7.13. Questa prevede che, in ordine, debba essere utilizzato:
 - a) il prodotto specifico del fornitore di energia elettrica se disponibili i certificati di garanzia di origine o mix energetico specifico della realtà produttiva nel caso in cui venga autoprodotta energia;
 - b) il mix di energia elettrica totale specifico del fornitore se disponibili i certificati di garanzia di origine;
 - c) il "residual mix specifico del Paese".

Per elaborare il "residual mix specifico del Paese " si deve fare riferimento ai dati forniti da AIB che riportano le diverse fonti energetiche del residual mix per i Paesi europei¹. Nello stesso report AIB, è inoltre possibile identificare quali tra le fonti del residual mix non fanno parte del Production Mix del Paese. Sulla base delle informazioni di Eurostat² si identificano i Paesi da cui viene importata tale energia elettrica (i Paesi esportatori devono includere nel loro Production Mix le fonti energetiche esportate). Conoscendo così il Production mix del Paese, le fonti energetiche importate e i Paesi esportatori di tali fonti energetiche è possibile costruire il dataset del residual mix specifico del Paese.

Per il residual mix italiano i seguenti valori e i rispettivi dataset devono essere utilizzati:

Tabella 9 Residual mix italiano. Valori riferiti alla produzione di 1kWh di energia elettrica ad alta tensione

Transmission network, electricity, high voltage {GLO} market for Cut-off, U	6,58E-9 km
Transmission network, long-distance {UCTE} construction Cut-off, U	3,17E-10 km
Electricity, high voltage {IT} electricity production, deep geothermal Cut-off, U	0,0001 kWh
Electricity, high voltage {IT} electricity production, hard coal Cut-off, U	0,1988 kWh
Electricity, high voltage {IT} electricity production, hydro, pumped storage Cut-off, U	0,001 kWh
Electricity, high voltage {IT} electricity production, hydro, reservoir, alpine region Cut-off, U	0,0144 kWh
kWhElectricity, high voltage {IT} electricity production, hydro, run-of-river Cut-off, U	0,0081 kWh

¹ https://www.aibnet.org/sites/default/files/assets/facts/residualmix/2020/AIB_2020_Residual_Mix_Results.pdf

² https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_ti_eh&lang=en

Electricity, high voltage {IT} electricity production, natural gas, combined cycle power plant Cut-off, U Electricity, high voltage {IT} electricity production, natural gas, conventional power plant Cut-off, U O,19	56 kWh 76 kWh 31 kWh 34 kWh
plant Cut-off, U Electricity, high voltage {IT} electricity production, natural gas, conventional power plant Cut-off, U	31 kWh 34 kWh 35 kWh
plant Cut-off, U	34 kWh 35 kWh
Electricity, high voltage {IT} electricity production, oil Cut-off, U 0,00	35 kWh
Electricity, high voltage {IT} electricity production, wind, <1MW turbine, onshore 0,00 Cut-off, U	
Electricity, high voltage {IT} electricity production, wind, >3MW turbine, onshore 0,00 Cut-off, U	11 kWh
Electricity, high voltage {IT} electricity production, wind, 1-3MW turbine, onshore 0,00 Cut-off, U	8 kWh
Electricity, high voltage {IT} heat and power co-generation, biogas, gas engine Cutoff, U	01 kWh
Electricity, high voltage {IT} heat and power co-generation, hard coal Cut-off, U 0,00	07 kWh
Electricity, high voltage {IT} heat and power co-generation, natural gas, combined cycle power plant, 400MW electrical Cut-off, U	36 kWh
Electricity, high voltage {IT} heat and power co-generation, natural gas, conventional power plant, 100MW electrical Cut-off, U	4 kWh
Electricity, high voltage {IT} heat and power co-generation, oil Cut-off, U 0,01	57 kWh
Electricity, high voltage {IT} heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014 Cut-off, U	33 kWh
Electricity, low voltage {IT} electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted Cut-off, U	07 kWh
Electricity, low voltage {IT} electricity production, photovoltaic, 3kWp slanted-roof installation, single-Si, panel, mounted Cut-off, U	06 kWh
Electricity, low voltage {IT} electricity production, photovoltaic, 570kWp open ground installation, multi-Si Cut-off, U	23 kWh
Electricity, high voltage {CH} electricity production, nuclear, boiling water reactor Cut-off, U	48 kWh
kWhElectricity, high voltage {CH} electricity production, nuclear, pressure water reactor Cut-off, U	11 kWh
Electricity, high voltage {FR} electricity production, nuclear, pressure water reactor Cut-off, U	75 kWh
Electricity, high voltage {SI} electricity production, nuclear, pressure water reactor Cut-off, U 0,01	1 kWh
Residual Electricity mix, high voltage {IT} market for Cut-off, U (richiamare il dataset per il residual mix)	95 kWh
Dinitrogen monoxide (emissioni in aria) 5,	00E-6 kg
Ozone (emissioni in aria) 4,	16E-6 kg

Per il residual mix italiano a media tensione si devono aggiungere le perdite di trasmissione (circa 0,33%), il consumo di esafluoruro di zolfo (Sulfur hexafluoride, liquid {RER}| market for sulfur hexafluoride, liquid | Cut-off, U: 1,13E-7 kg per 1kWh di energia prodotta) e relative emissioni in aria (Sulfur hexafluoride 1: 13E-7 kg per 1kWh di energia prodotta), la rete di trasmissione (Transmission network, electricity, medium voltage {GLO}| market for | Cut-off, U: 1,86E-8 km per 1kWh di energia prodotta) e infine considerare che il mix sia costituito per il 2,7% da solare fotovoltaico (prodotto con le tre tecnologie e le relative proporzioni riportate nella Tabella 10) e il restante 97,3% da elettricità prodotta ad alta tensione e trasformata in media tensione (per trasformare l'elettricità da alta a media tensione è necessario considerare le perdite di trasformazione da alta a media tensione pari a circa 0,55% così come indicato in Ecoinvent 3.8).

Tabella 10 mix di solare fotovoltaico media tensione

Electricity, low voltage {IT} electricity production, photovoltaic, 3kWp slanted-roof	20,45 %
installation, multi-Si, panel, mounted Cut-off, U	
Electricity, low voltage {IT} electricity production, photovoltaic, 3kWp slanted-roof	16,35 %
installation, single-Si, panel, mounted Cut-off, U	
Electricity, low voltage {IT} electricity production, photovoltaic, 570kWp open	63,20 %
ground installation, multi-Si Cut-off, U	

Per il residual mix italiano a bassa tensione si devono aggiungere le perdite di trasmissione (circa 2,27%), il consumo di esafluoruro di zolfo (Sulfur hexafluoride, liquid {RER}| market for sulfur hexafluoride, liquid | Cut-off, U: 1,13E-7 kg per 1kWh di energia prodotta) e relative emissioni in aria (Sulfur hexafluoride 1: 6,27E-9kg per 1kWh di energia prodotta), la rete di distribuzione (Distribution network, electricity, low voltage {GLO}| market for | Cut-off, U: 8,74E-8 km per 1kWh di energia prodotta) e infine considerare che il mix sia costituito per il 1,77% da solare fotovoltaico (prodotto con le tre tecnologie e le relative proporzioni riportate nella Tabella 11) e il restante 98,23% da elettricità prodotta a media tensione e trasformata in bassa tensione (per trasformare l'elettricità da media a bassa tensione è necessario considerare le perdite di trasformazione da media a bassa tensione pari a circa 2,4% così come indicato in Ecoinvent 3.8).

Tabella 11 mix di solare fotovoltaico bassa tensione

Electricity, low voltage {IT} electricity production, photovoltaic, 3kWp slanted-roof	20,34 %
installation, multi-Si, panel, mounted Cut-off, U	
Electricity, low voltage {IT} electricity production, photovoltaic, 3kWp slanted-roof	16,38 %
installation, single-Si, panel, mounted Cut-off, U	
Electricity, low voltage {IT} electricity production, photovoltaic, 570kWp open	63,28 %
ground installation, multi-Si Cut-off, U	

7. REQUISITI RELATIVI AI DATI GENERICI RELATIVI AI PROCESSI SU CUI L'ORGANIZZAZIONE NON ESERCITA ALCUN CONTROLLO (DI «BACKGROUND») E DATI MANCANTI

L'azienda ha accesso a informazioni primarie

- 475 Quando un processo non viene eseguito dall'utente delle RCP, ma è possibile accedere a dati specifici 476 dell'azienda, ci sono tre possibili opzioni:
 - L'utente delle RCP ha accesso a vaste informazioni specifiche del fornitore e desidera creare un nuovo dataset (Opzione 1);
 - L'azienda dispone di alcune informazioni specifiche del fornitore e desidera apportare alcune modifiche minime (Opzione 2);
 - Il processo non è nell'elenco dei processi più rilevanti e l'azienda desidera apportare alcune modifiche minime (opzione 3).

Situazione 2/Opzione 1

- 484 Per tutti i processi non eseguiti dall'azienda e in cui l'utente delle RCP applica dati specifici dell'azienda, i
- 485 DQR del dataset di nuova creazione devono essere valutati come descritto nella sezione "Dataset specifici
- 486 dell'azienda".

477

478

479

480

481 482

483

487

494

495

Situazione 2/Opzione 2

- 488 A partire dal dataset secondari predefiniti forniti nelle RCP, l'utente delle RCP utilizza activity data specifici
- dell'azienda per quanto riguarda le distanze di trasporto e sostituisce i sotto-processi utilizzati per definire il
- 490 mix energetico con dataset specifici della realtà in oggetto.
- 491 L'utente delle RCP deve rendere i DQR specifici per il contesto rivalutando TeR e TiR utilizzando la Tabella
- 492 12. I criteri GeR devono essere ridotti del 30% e il criterio P deve mantenere il valore originale.

493 Situazione 2/Opzione 3

In questo caso, l'utente delle RCP utilizza i valori dei DQR predefiniti.

Tabella 12 Come valutare il valore dei DQR quando vengono utilizzati dataset secondari.

	TiR	TeR	GeR
1	La pubblicazione del report dell'impronta ambientale avviene entro il periodo di validità del dataset	La tecnologia utilizzata nello studio dell'impronta ambientale è esattamente la stessa di quella utilizzata nell'ambito del dataset	Il processo modellato nello studio dell'impronta ambientale si svolge nel paese per il quale il dataset è valido
2	La data di pubblicazione del report dell'impronta ambientale avviene non oltre 2 anni dopo la validità temporale del dataset	Le tecnologie utilizzate nello studio dell'impronta ambientale sono incluse nel mix di tecnologie nell'ambito del dataset	Il processo modellato nello studio dell'impronta ambientale si svolge nella regione geografica (ad es. Europa) per cui il dataset è valido
3	La data di pubblicazione del report dell'impronta ambientale avviene non	Le tecnologie utilizzate nello studio dell'impronta ambientale sono solo	Il processo modellato nello studio dell'impronta ambientale si svolge in una delle regioni geografiche per le quali il

	TiR	TeR	GeR
	oltre 4 anni dopo la validità temporale del dataset	parzialmente incluse nell'ambito del dataset	dataset è valido
4	La data di pubblicazione del report dell'impronta ambientale avviene non oltre 6 anni dopo la validità temporale del dataset	Le tecnologie utilizzate nello studio dell'impronta ambientale sono simili a quelle incluse nell'ambito del dataset	Il processo modellato nello studio dell'impronta ambientale si svolge in un paese che non è incluso nella regione o nelle regioni geografiche per cui è valido il dataset, ma sono stimate analogie sufficienti sulla base del giudizio di esperti.
5	La data di pubblicazione del report dell'impronta ambientale avviene dopo 6 anni dalla validità temporale del dataset	Le tecnologie utilizzate nello studio dell'impronta ambientale sono diverse da quelle incluse nell'ambito del dataset	Il processo modellato nello studio dell'impronta ambientale si svolge in un paese diverso da quello per cui è valido il dataset

L'azienda non ha accesso a informazioni primarie

- Se un processo non viene eseguito dall'azienda che utilizza le RCP e l'azienda non ha accesso ai dati specifici, ci sono due possibili opzioni:
- 499 È nell'elenco dei processi più rilevanti (situazione 3, opzione 1);
 - Non è nell'elenco dei processi più rilevanti (situazione 3, opzione 2).

501 Situazione 3/Opzione 1

496

500

509

510

513

- In questo caso, l'utente delle RCP deve rendere i valori dei DQR dell'insieme di dati utilizzato specifici al contesto, rivalutando TeR, TiR e GeR, utilizzando le tabelle fornite. Il criterio P manterrà il valore originario.
- 504 Situazione 3/Opzione 2
- Per i processi non rilevanti, l'utente delle RCP applica l'insieme di dati secondari corrispondente elencato nelle RCP insieme ai suoi valori dei DQR.
- 507 Se l'insieme di dati predefinito da utilizzare per il processo non è elencato nelle RCP, l'utente delle RCP deve 508 prendere i valori dei DQR dall'insieme di dati originale.

7.1. DATI MANCANTI

I valori di default inclusi nel file "Allegato Tecnico RCP Foraggio" possono essere usati per risolvere le lacune di dati più frequenti.

7.2. DISTRIBUZIONE

- Qualora sia un dato disponibile, si dovranno utilizzare informazioni relative seguenti processi:
- Zona di distribuzione del foraggio;
- Mezzo di trasporto;

521

527

528

529

530

531

532

533

534

- Distanze percorse per mezzo di trasporto utilizzato (km);
- Quantità di foraggio trasportato (tonnellate).
- In assenza di informazioni relative alla distribuzione, potrà essere utilizzato il valore incluso nel file
- 520 "Allegato Tecnico RCP Foraggio".

7.3. FASE D'USO

- 522 Il foraggio a base di erba medica essiccata è un prodotto semilavorato intermedio che diventa parte degli
- 523 ingredienti della mangimistica animale, non è quindi stata analizzata la fase d'uso.

524 **7.4. FASE DI FINE VITA**

- 525 Il foraggio a base di erba medica essiccata è un prodotto semilavorato intermedio che diventa parte degli
- 526 ingredienti della mangimistica animale, non è quindi stata analizzata la fase di fine vita.

7.5. REQUISITI PER L'ALLOCAZIONE DI PRODOTTI MULTIFUNZIONALI E PROCESSI MULTIPRODOTTO

I dati di input/output raccolti per la fase di produzione del tessuto dovrebbero essere raccolti in modo separato per lo specifico prodotto oggetto di studio PEF al fine di disporre di un quadro più dettagliato e preciso possibile del processo in esame. Solo qualora tali dati non risultassero effettivamente disponibili per specifico prodotto, è possibile impiegare dati a livello di stabilimento, allocandoli sulla massa complessiva di tessuti prodotti.

8. BENCHMARK E CLASSI DI PRESTAZIONI AMBIENTALI

- Le tabelle a continuazione presentano i valori del benchmark per 1 tonnellata di prodotto rappresentativo, caratterizzati, normalizzati e pesati, solamente per le tre categorie d'impatto più rilevanti. I risultati per tutte le categorie d'impatto sono inclusi nell'Allegato II.
- 538 Tabella 13: Caratterizzazione: Benchmark per il PR

Categoria di impatto	Unità	Ciclo di vita
Climate Change	kg CO2 eq	220,69
Particulate matter	disease	
Particulate matter	incidence	1,81E-05
Resource use, fossils	MJ	2.833,62

Tabella 14: Normalizzazione: Benchmark per il PR

Categoria di impatto	Ciclo di vita
Climate Change	0,0272
Particulate matter	0,0304
Resource use, fossils	0,0435

Tabella 15: Pesatura: Benchmark per il PR

Categoria di impatto		Ciclo di vita
Climate Change	mPt	5,740
Particulate matter	mPt	2,724
Resource use, fossils	mPt	3,626

A continuazione, nella Tabella 16, si presenta il valore del benchmark come singolo valore, calcolato per 1 tonnellata di prodotto rappresentativo identificato.

Tabella 16: Benchmark come singolo valore

Prodotto rappresentativo	Unità di misura	Benchmark
Foraggio a base di erba medica	mPt	12,09

L'impatto del prodotto calcolato sulla base della presente RCP deve essere ottenuto sommando i risultati pesati delle 3 categorie d'impatto più rilevanti indicate al capitolo 4.5. Tale impatto deve essere confrontato con il valore di benchmark al fine di poter definire l'appartenenza del prodotto alla corrispondente classe di prestazione.

Le classi di prestazione previste sono tre, A, B e C e sono definite a partire dal valore del benchmark e dalle soglie superiore ed inferiore. In particolare, i prodotti il cui impatto calcolato come valore singolo (somma dei risultati pesati delle 3 categorie d'impatto più rilevanti) risulti maggiore del valore di soglia superiore devono essere classificati in classe C. I prodotti il cui impatto calcolato come valore singolo (somma dei risultati pesati delle 3 categorie d'impatto più rilevanti) risulti minore del valore di soglia inferiore devono essere classificati in classe A. I prodotti il cui impatto calcolato come valore singolo (somma dei risultati pesati delle 3 categorie d'impatto più rilevanti) risulti compreso tra il valore di soglia superiore e quello inferiore devono essere classificati in classe B.

Le classi di performance sono state identificate calcolando il punteggio (somma dei risultati pesati delle 3 categorie d'impatto più rilevanti) in base ai dati delle imprese coinvolte nello screening study.

Le classi di performance risultanti sono presentate nella tabella a continuazione:

Tabella 17: Classi di performance per il prodotto rappresentativo

CLASSE A (mPt)	CLASSE B (mPt)	CLASSE C (mPt)
<10,88	10,88 ≤ <i>X</i> ≤ 13,29	>13,29

563	9. REPORTING E COMUNICAZIONE
564 565 566	La Dichiarazione dell'Impronta Ambientale di Prodotto deve essere eseguita secondo quanto previsto dall'Allegato 2 del Decreto del Ministero dell'Ambiente e della Tutela del Territorio e del Mare del 21 Marzo 2018.
567 568	Risulta possibile utilizzare la RCP oggetto di questo studio, per comparare le performance di prodotti simili, purché rientrino nell'ambito di applicazione del presente documento.
569 570 571	Fermo restando le limitazioni esposte nella presente RCP, le Dichiarazioni di Impronta Ambientale condotte in conformità alla presente RCP producono risultati ragionevolmente comparabili e le informazioni incluse al suo interno possono quindi essere utilizzate in comparazioni e asserzioni comparative.
572	10.VERIFICA
573 574	La Verifica dello studio di impronta ambientale deve essere condotta secondo quanto previsto dall'Allegato 3 del Decreto del Ministero dell'ambiente e della Tutela del Territorio e del Mare del 21 Marzo 2018.
575	
576	11.RIFERIMENTI BIBLIOGRAFICI
577 578 579	D.M. 21 marzo 2018, n. 56, in materia di "Regolamento per l'attuazione dello schema nazionale volontario per la valutazione e la comunicazione dell'impronta ambientale dei prodotti, denominato "Made Green in Italy" di cui all'articolo 21, comma 1, della legge 28 dicembre 2015, n. 221"
580 581	European Commission. (2013). Attitudes of Europeans Towards Building the Single Market for Green Products. European Commission.
582	European Commission. (2018). PEFCR Guidance document, - Guidance for the 13 development of Product

Environmental Footprint Category Rules (PEFCRs), version 6.3

JRC technical reports (2019). Suggestions for updating the Product Environmental Footprint (PEF) method.

ALLEGATO I - PRODOTTO RAPPRESENTATIVO

Il foraggio maggiormente presente nelle imprese di trasformazione è l'erba medica, per la quale è riportata la caratterizzazione: l'erba medica è una pianta erbacea perennante appartenente alla divisione Phanerogame, sottodivisione delle Angiospermae, Classe Dicotylenodes, Ordine Rosales, Superfamiglia Leguminosea, Famiglia Fabaceae, Tribù Trifoliae, Genere Medicago e specie diverse fra le quali: sativa, falcata, cerulea, media, gaetula, glutinosa, prostrata. Pianta allogama con impollinazione entomofila presenta un apparato radicale fittonanate molto profondo e robusto. Ha steli glabri alti fino a 90-100 cm, il fusto presenta foglie alterne trifogliate e diverse a seconda della varietà. I fiori sono di colore viola azzurro numerosi e riuniti in racemi. I prodotti considerati sono i foraggi quali materie prime per mangime in particolare:

- foraggio essiccato a fibra lunga: foraggio trinciato alla raccolta ad una lunghezza variabile da 3 a 10 cm, essiccato naturalmente al sole, o artificialmente e confezionato in balloni, destinato all'alimentazione zootecnica;
- foraggio essiccato in pellet: foraggio che, successivamente all'essiccazione è macinato e pellettato per compressione attraverso filiere di diversi diametri (ad es. 0,6–1,8 cm) per utilizzo nell'alimentazione zootecnica e nell'industria mangimistica.

L'erba medica contiene grandi quantità di carotene, elemento che ne può contraddistinguere specifiche qualitative. L'impiego del foraggio in mangimi semplici viene destinato ad allevamenti bovini ed equini, mentre l'impiego del foraggio in mangimi composti, viene indirizzato anche ad allevamenti avicoli e suinicoli. Il foraggio pellettato in uscita dai centri di lavorazione può essere utilizzato tal quale oppure destinato ad una rilavorazione, ovvero polverizzato e quindi miscelato ad altri mangimi per l'ottenimento della razione degli animali. I balloni, a qualsiasi livello di trinciatura, vengono destinati direttamente all'alimentazione animale. L'operatore del settore dei mangimi post primario, oltre ad esser registrato per la fase post primaria ai sensi dell'art. 5 comma 2 del Reg. 183/2005, deve garantire che il processo sia supervisionato da un responsabile di produzione e seguire procedure basate su principi HACCP.

ALLEGATO II - BENCHMARK E CLASSI DI PRESTAZIONI AMBIENTALI

Di seguito i valori del benchmark per 1 tonnellata di prodotto rappresentativo, caratterizzati, normalizzati e pesati.

Tabella 18: Valori di riferimento caratterizzati per PR

Categorie di impatto Unità continuation Erba Medica impatto Trasporto Erba Medica Erba Medica Erba Medica impatto Essicazione Erba maleliagii Produzione Imballaggii Distribuzione Imballaggii Totale Climate change depletion depletion depletion depletion depletion and production depletion depletion depletion. 85,165 3,466 72,718 5,374 53,969 220,69 Jonising radiation, HH eq. 88 Q U-235 equitoria depletion eq. 4,34 0,19 2,59 0,62 3,48 11,22 equitoria depletion eq. Photochemical cozone documental cozone formation, HH eq. kg NMVOC eq. 0,60 0,03 0,23 0,02 0,78 1,67 Proticulate matter disease matter 1,08E-05 1,63E-07 3,67E-06 3,44E-07 3,16E-06 1,81E-05 Non-cancer human health effects CTUh 2,61E-06 1,14E-07 4,23E-07 3,49E-07 4,26E-07 3,92E-06 Eutrophication freshwater mol H' eq. 0,61 0,03 0,24 0,04 1,14 2,05 Eutrophication freshwater kg N eq. 0,630 0,009 0,071 0,006 <td< th=""><th></th><th colspan="8"></th></td<>									
Ozone depletion depletion depletion depletion kg CFC11 eq. 9,46E-06 eq. 4,29E-07 9,16E-06 3,50E-07 1,13E-05 3,07E-05 Ionising radiation, HH cq. kBq U-235 eq. 4,34 0,19 2,59 0,62 3,48 11,22 Photoschemical cozone formation, HH Particulate matter kg NMVOC eq. 0,60 0,03 0,23 0,02 0,78 1,67 Particulate matter disease incidence 1,08E-05 1,63E-07 3,67E-06 3,44E-07 3,16E-06 1,81E-05 Non-cancer human health effects CTUh 2,61E-06 1,14E-07 4,23E-07 3,49E-07 4,26E-07 3,92E-06 Edification terrestrial and freshwater Total mol H* eq. 0,61 0,03 0,24 0,04 1,14 2,05 Eutrophication freshwater kg N eq. 0,630 0,009 0,071 0,006 0,262 0,977 Eutrophication freshwater kg N eq. 0,630 0,009 0,071 0,006 0,262 0,977 Eutrophication terrestrial kg N eq. 0,630	_	Unità		Erba	Erba		Distribuzione	Totale	
Ionising radiation, HH eq. 0,60 0,03 0,23 0,02 0,78 1,62 0,60 0,60 0,03 0,23 0,02 0,78 1,67 0,67	Climate change	kg CO₂ eq.	85,165	3,466	72,718	5,374	53,969	220,69	
Particulate Reg RMNVOC		•	9,46E-06	4,29E-07	9,16E-06	3,50E-07	1,13E-05	3,07E-05	
Photochemical ozone kg NMVOC eq. 0,60 0,03 0,23 0,02 0,78 1,67	~	•	4,34	0,19	2,59	0,62	3,48	11,22	
matter incidence 1,08E-05 1,63E-07 3,67E-06 3,44E-07 3,16E-06 1,81E-05 Non-cancer human health effects CTUh 2,61E-06 1,14E-07 4,23E-07 3,49E-07 4,26E-07 3,92E-06 Cancer human health effects CTUh 1,07E-07 4,87E-09 1,85E-08 2,30E-08 3,16E-08 1,85E-07 Acidification terrestrial and freshwater mol H ⁺ eq. 0,61 0,03 0,24 0,04 1,14 2,05 Eutrophication freshwater kg P eq. 0,0180 0,0008 0,0046 0,0041 0,0025 0,0299 Eutrophication marine kg N eq. 0,630 0,009 0,071 0,006 0,262 0,977 Eutrophication marine mol N eq. 4,86 0,09 0,82 0,06 2,92 8,75 Ecotoxicity freshwater CTUe 2,307,89 69,85 758,92 278,34 508,62 3,923,62 Land use Pt 1,428,32 44,22 611,68 89,50 374,98 2,548	ozone	kg NMVOC	0,60	0,03	0,23	0,02	0,78	1,67	
human health effects CTUh 2,61E-06 1,14E-07 4,23E-07 3,49E-07 4,26E-07 3,92E-06 Cancer human health effects CTUh 1,07E-07 4,87E-09 1,85E-08 2,30E-08 3,16E-08 1,85E-07 Acidification terrestrial and freshwater mol H ⁺ eq. 0,61 0,03 0,24 0,04 1,14 2,05 Eutrophication freshwater kg P eq. 0,0180 0,0008 0,0046 0,0041 0,0025 0,0299 Eutrophication marine kg N eq. 0,630 0,009 0,071 0,006 0,262 0,977 Eutrophication terrestrial mol N eq. 4,86 0,09 0,82 0,06 2,92 8,75 Ecotoxicity freshwater CTUe 2,307,89 69,85 758,92 278,34 508,62 3,923,62 Land use Pt 1,428,32 44,22 611,68 89,50 374,98 2,548,69 Water use m³ deprivation 8,18 0,36 7,57 1,78 1,91 19,79			1,08E-05	1,63E-07	3,67E-06	3,44E-07	3,16E-06	1,81E-05	
health effects CTUh 1,07E-07 4,87E-09 1,85E-08 2,30E-08 3,16E-08 1,85E-07 Acidification terrestrial and freshwater mol H* eq. 0,61 0,03 0,24 0,04 1,14 2,05 Eutrophication freshwater kg P eq. 0,0180 0,0008 0,0046 0,0041 0,0025 0,0299 Eutrophication marine kg N eq. 0,630 0,009 0,071 0,006 0,262 0,977 Eutrophication terrestrial mol N eq. 4,86 0,09 0,82 0,06 2,92 8,75 Ecotoxicity freshwater CTUe 2,307,89 69,85 758,92 278,34 508,62 3.923,62 Land use Pt 1,428,32 44,22 611,68 89,50 374,98 2.548,69 Water use m³ deprivation 8,18 0,36 7,57 1,78 1,91 19,79 Resource use, fossils MJ 908,83 41,34 1072,87 73,92 736,66 2.833,62	human health	CTUh	2,61E-06	1,14E-07	4,23E-07	3,49E-07	4,26E-07	3,92E-06	
terrestrial and freshwater mol H* eq. 0,61 0,03 0,24 0,04 1,14 2,05 Eutrophication freshwater kg P eq. 0,0180 0,0008 0,0046 0,0041 0,0025 0,0299 Eutrophication marine kg N eq. 0,630 0,009 0,071 0,006 0,262 0,977 Eutrophication terrestrial mol N eq. 4,86 0,09 0,82 0,06 2,92 8,75 Ecotoxicity freshwater CTUe 2.307,89 69,85 758,92 278,34 508,62 3.923,62 Land use Pt 1.428,32 44,22 611,68 89,50 374,98 2.548,69 Water use m³ deprivation 8,18 0,36 7,57 1,78 1,91 19,79 Resource use, fossils MJ 908,83 41,34 1072,87 73,92 736,66 2.833,62 Climate change – fossil kg CO ₂ eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change – biogeni		CTUh	1,07E-07	4,87E-09	1,85E-08	2,30E-08	3,16E-08	1,85E-07	
freshwater kg P eq. 0,0180 0,0008 0,0046 0,0041 0,0025 0,0299 Eutrophication marine kg N eq. 0,630 0,009 0,071 0,006 0,262 0,977 Eutrophication terrestrial mol N eq. 4,86 0,09 0,82 0,06 2,92 8,75 Ecotoxicity freshwater CTUe 2.307,89 69,85 758,92 278,34 508,62 3.923,62 Land use Pt 1.428,32 44,22 611,68 89,50 374,98 2.548,69 Water use m³ deprivation 8,18 0,36 7,57 1,78 1,91 19,79 Resource use, fossils MJ 908,83 41,34 1072,87 73,92 736,66 2.833,62 Resource use, mineral and metals kg Sb eq. 0,00095 0,00004 0,00023 0,00049 0,00010 0,00181 Climate change – fossil kg CO ₂ eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change –	terrestrial and	mol H ⁺ eq.	0,61	0,03	0,24	0,04	1,14	2,05	
marine kg N eq. 0,630 0,009 0,001 0,006 0,262 0,977 Eutrophication terrestrial mol N eq. 4,86 0,09 0,82 0,06 2,92 8,75 Ecotoxicity freshwater CTUe 2,307,89 69,85 758,92 278,34 508,62 3.923,62 Land use Pt 1,428,32 44,22 611,68 89,50 374,98 2.548,69 Water use m³ deprivation 8,18 0,36 7,57 1,78 1,91 19,79 Resource use, fossils MJ 908,83 41,34 1072,87 73,92 736,66 2.833,62 Resource use, mineral and metals kg Sb eq. 0,00095 0,00004 0,00023 0,00049 0,00010 0,00181 Climate change – fossil kg CO ₂ eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change – biogenic kg CO ₂ eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change – land us	•	kg P eq.	0,0180	0,0008	0,0046	0,0041	0,0025	0,0299	
terrestrial MOI N eq. 4,86 0,09 0,82 0,06 2,92 8,75 Ecotoxicity freshwater CTUe 2.307,89 69,85 758,92 278,34 508,62 3.923,62 Land use Pt 1.428,32 44,22 611,68 89,50 374,98 2.548,69 Water use m³ deprivation 8,18 0,36 7,57 1,78 1,91 19,79 Resource use, fossils MJ 908,83 41,34 1072,87 73,92 736,66 2.833,62 Resource use, mineral and metals kg Sb eq. 0,00095 0,00004 0,00023 0,00049 0,00010 0,00181 Climate change – fossil kg CO2 eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change – biogenic kg CO2 eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change – land use and kg CO2 eq. 0,13 0,01 0,02 0,01 0,04 0,19	•	kg N eq.	0,630	0,009	0,071	0,006	0,262	0,977	
freshwater CTUE 2.307,89 69,85 758,92 278,34 508,62 3.923,62 Land use Pt 1.428,32 44,22 611,68 89,50 374,98 2.548,69 Water use m³ deprivation 8,18 0,36 7,57 1,78 1,91 19,79 Resource use, fossils MJ 908,83 41,34 1072,87 73,92 736,66 2.833,62 Resource use, mineral and metals kg Sb eq. 0,00095 0,00004 0,00023 0,00049 0,00010 0,00181 Climate change biogenic kg CO ₂ eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change biogenic kg CO ₂ eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change chan		mol N eq.	4,86	0,09	0,82	0,06	2,92	8,75	
Water use m³ deprivation 8,18 0,36 7,57 1,78 1,91 19,79 Resource use, fossils MJ 908,83 41,34 1072,87 73,92 736,66 2.833,62 Resource use, mineral and metals kg Sb eq. 0,00095 0,00004 0,00023 0,00049 0,00010 0,00181 Climate change - fossil kg CO ₂ eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change - biogenic kg CO ₂ eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change - land use and kg CO ₂ eq. 0,13 0,01 0,02 0,01 0,04 0,19	-	CTUe	2.307,89	69,85	758,92	278,34	508,62	3.923,62	
Resource use, fossils MJ 908,83 41,34 1072,87 73,92 736,66 2.833,62 Resource use, mineral and metals kg Sb eq. 0,00095 0,00004 0,00023 0,00049 0,00010 0,00181 Climate change – fossil kg CO2 eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change – biogenic kg CO2 eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change – land use and kg CO2 eq. 0,13 0,01 0,02 0,01 0,04 0,19	Land use		1.428,32	44,22	611,68	89,50	374,98	2.548,69	
fossils IVIJ 908,83 41,34 1072,87 73,92 736,66 2.833,62 Resource use, mineral and metals kg Sb eq. 0,00095 0,00004 0,00023 0,00049 0,00010 0,00181 Climate change – fossil kg CO2 eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change – biogenic kg CO2 eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change – land use and kg CO2 eq. 0,13 0,01 0,02 0,01 0,04 0,19	Water use		8,18	0,36	7,57	1,78	1,91	19,79	
mineral and metals kg Sb eq. 0,00095 0,00004 0,00023 0,00049 0,00010 0,00181 Climate change - fossil kg CO2 eq. 84,95 3,46 72,55 5,28 53,91 220,15 Climate change - biogenic kg CO2 eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change - land use and kg CO2 eq. 0,13 0,01 0,02 0,01 0,04 0,19	fossils	MJ	908,83	41,34	1072,87	73,92	736,66	2.833,62	
Climate change biogenic kg CO2 eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change biogenic - land use and land land land land land land land	mineral and	kg Sb eq.	0,00095	0,00004	0,00023	0,00049	0,00010	0,00181	
- biogenic kg CO_2 eq. 0,09 0,00 0,15 0,09 0,02 0,35 Climate change - land use and kg CO_2 eq. 0,13 0,01 0,02 0,01 0,04 0,19		kg CO ₂ eq.	84,95	3,46	72,55	5,28	53,91	220,15	
- land use and kg CO ₂ eq. 0,13 0,01 0,02 0,01 0,04 0,19		kg CO ₂ eq.	0,09	0,00	0,15	0,09	0,02	0,35	
	- land use and	kg CO₂ eq.	0,13	0,01	0,02	0,01	0,04	0,19	

Tabella 19: Valori di riferimento normalizzati per PR

Categorie di impatto	Coltivazione Erba Medica	Trasporto Erba Medica	Essiccazione Erba Medica	Produzione Imballaggi	Distribuzione	Totale
Climate change	0,0105	0,0004	0,0090	0,0007	0,0067	0,0272
Ozone depletion	0,0002	0,0000	0,0002	0,0000	0,0002	0,0005
lonising radiation, HH	0,0010	0,0000	0,0006	0,0001	0,0008	0,0026
Photochemical ozone formation, HH	0,0149	0,0007	0,0058	0,0006	0,0193	0,0411
Particulate matter	0,0181	0,0003	0,0062	0,0006	0,0053	0,0304
Non-cancer human health effects	0,0114	0,0005	0,0018	0,0015	0,0019	0,0170
Cancer human health effects	0,0064	0,0003	0,0011	0,0014	0,0019	0,0109
Acidification terrestrial and freshwater	0,0110	0,0005	0,0043	0,0007	0,0205	0,0369
Eutrophication freshwater	0,0112	0,0005	0,0029	0,0025	0,0015	0,0186
Eutrophication marine	0,0322	0,0004	0,0036	0,0003	0,0134	0,0500
Eutrophication terrestrial	0,0275	0,0005	0,0046	0,0003	0,0165	0,0495
Ecotoxicity freshwater	0,0541	0,0016	0,0178	0,0065	0,0119	0,0919
Land use	0,0017	0,0001	0,0007	0,0001	0,0005	0,0031
Water use	0,0007	0,000	0,0007	0,0002	0,0002	0,0017
Resource use, fossils	0,0140	0,0006	0,0165	0,0011	0,0113	0,0435
Resource use, mineral and metals	0,0148	0,0007	0,0036	0,0078	0,0016	0,0285

Tabella 20: Valori di riferimento pesati per PR

Categorie di impatto	Unità	Coltivazione Erba Medica	Trasporto Erba Medica	Essiccazione Erba Medica	Produzione Imballaggi	Distribuzione	Totale
Climate change	μPt	11,444	0,383	5,547	1,249	6,593	5,740
Ozone depletion	μPt	2,215	0,090	1,891	0,140	1,404	0,036
Ionising radiation, HH	μPt	0,011	0,001	0,011	0,000	0,013	0,133
Photochemical ozone formation, HH	μPt	0,052	0,002	0,031	0,007	0,041	1,968
Particulate matter	μPt	0,711	0,033	0,276	0,027	0,921	2,724
Non-cancer	μPt	1,619	0,025	0,553	0,052	0,476	0,314

human health effects							
Cancer human health effects	μPt	0,209	0,009	0,034	0,028	0,034	0,233
Acidification							
terrestrial and	μPt	0,135	0,006	0,023	0,029	0,040	2,290
freshwater							
Eutrophication freshwater	μPt	0,683	0,029	0,264	0,046	1,269	0,522
Eutrophication marine	μPt	0,313	0,014	0,080	0,071	0,043	1,480
Eutrophication terrestrial	μPt	0,954	0,013	0,108	0,009	0,397	1,837
Ecotoxicity freshwater	μPt	1,021	0,019	0,171	0,013	0,612	1,765
Land use	μPt	1,038	0,031	0,341	0,125	0,229	0,247
Water use	μPt	0,138	0,004	0,059	0,009	0,036	0,147
Resource use, fossils	μPt	0,061	0,003	0,056	0,013	0,014	3,626
Resource use, mineral and metals	μPt	1,163	0,053	1,373	0,095	0,943	2,152

Tabella 21: Contributi percentuali delle diverse fasi del ciclo di vita per il PR

Categorie di impatto	Coltivazione Erba Medica	Trasporto Erba Medica	Essiccazione Erba Medica	Produzione Imballaggi	Distribuzione
Climate change	45,4%	1,5%	22,0%	5,0%	26,1%
Ozone depletion	38,6%	1,6%	32,9%	2,4%	24,5%
Ionising radiation, HH	30,8%	1,4%	29,8%	1,1%	36,8%
Photochemical ozone formation, HH	38,7%	1,7%	23,1%	5,5%	31,0%
Particulate matter	36,1%	1,7%	14,0%	1,4%	46,8%
Non-cancer human health effects	59,4%	0,9%	20,3%	1,9%	17,5%
Cancer human health effects	66,5%	2,9%	10,8%	8,9%	10,9%
Acidification terrestrial and freshwater	57,9%	2,6%	10,0%	12,4%	17,0%
Eutrophication freshwater	29,8%	1,3%	11,5%	2,0%	55,4%
Eutrophication marine	60,0%	2,7%	15,4%	13,6%	8,3%
Eutrophication terrestrial	64,4%	0,9%	7,3%	0,6%	26,8%
Ecotoxicity freshwater	55,6%	1,1%	9,3%	0,7%	33,3%
Land use	58,8%	1,8%	19,3%	7,1%	13,0%
Water use	56,0%	1,7%	24,0%	3,5%	14,7%
Resource use, fossils	41,3%	1,8%	38,2%	9,0%	9,6%

Resource use,	32.1%	1.5%	37.9%	2.6%	26.0%
mineral and metals	32,170	1,5%	37,9%	2,0%	20,0%

624 ALLEGATO III - FATTORI DI NORMALIZZAZIONE

Tabella 22: Fattori di normalizzazione

Categorie di impatto	Unità	Fattore di normalizzazione	Fattori di normalizzazione per persona	Robustezza della valutazione d'impatto	Livello di completezza dell'inventario	Livello di robustezza dell'inventario
Cambiamenti climatici kg (GWP 100)	g CO2 eq	5,35E+13	7,76E+03	I	Ш	Т
Riduzione dello kg strato di ozono	g CFC-11 eq	1,61E+08	2,34E-02	I	III	II
Tossicità per gli esseri umani - effetti cancerogeni	CTUh	2,66E+05	3,85E-05	11/111	III	Ш
Tossicità per gli esseri umani - effetti non cancerogeni	CTUh	3,27E+06	4,75E-04	11/111	III	Ш
Inorganici respirabili	ncidenza delle malattie	4,39E+06	6,37E-04	I	1/11	1/11
Radiazione ionizzante – effetti sulla salute umana	q U ²³⁵ eq	2,91E+13	4,22E+03	II	II	III
Formazione di ozono kg fotochimico	NMVOC eq ³	2,80E+11	4,06E+01	II	III	1/11
Acidificazione m	ol H+ eq	3,83E+11	5,55E+01	II	II	1/11
Eutrofizzazione – terrestre	nol N eq	1,22E+12	1,77E+02	II	II	1/11
Eutrofizzazione – acquatica	kg P eq	1,76E+10	2,55E+00	II	II	Ш
Eutrofizzazione – marina	kg N eq	1,95E+11	2,83E+01	II	II	11/111
terreno Qu	ndice di ualità del uolo (pt)	9,20E+15	1,33E+06	III	II	II
Ecotossicità – ambiente acquatico acqua dolce	CTUe	8,15E+13	1,18E+04	11/111	III	III
Impoverimento delle m risorse – acqua	n3 world eq	7,91E+13	1,15E+04	III	I	II
Impoverimento delle	MJ	4,50E+14	6,53E+04	III	1	II

_

³ NMVOC = composti organici volatili non metanici.

Categorie di impatto	Unità	Fattore di normalizzazione	Fattori di normalizzazione per persona	Robustezza della valutazione d'impatto	Livello di completezza dell'inventario	Livello di robustezza dell'inventario
risorse –fossili						
Impoverimento delle risorse – minerali e metalli	kg Sb eq	3,99E+08	5,79E-02	Ш		

629 ALLEGATO IV - FATTORI DI PESATURA

Categorie di impatto	Unità	Set di pesatura aggregato (A)	Robustezza (B)	Calcolo (A*B)	Fattore finale
Cambiamenti climatici (GWP 100)	kg CO2 eq	15,75	0,87	13,70	22,19
Riduzione dello strato di ozono	kg CFC- 11 eq	6,92	0,6	4,15	6,75
Tossicità per gli esseri umani - effetti cancerogeni	CTUh	-	-	-	-
Tossicità per gli esseri umani - effetti non cancerogeni	CTUh	-	-	-	-
Particolato / Inorganici respirabili	Incidenza delle malattie	6,77	0,87	5,89	9,54
Radiazione ionizzante – effetti sulla salute umana	kBq U ²³⁵ eq	7,07	0,47	3,32	5,37
Formazione di ozono fotochimico	kg NMVOC eq ⁴	5,88	0,53	3,12	5,1
Acidificazione	mol H+ eq	6,13	0,67	4,11	6,64
Eutrofizzazione – terrestre	mol N eq	3,61	0,67	2,42	3,91
Eutrofizzazione – acquatica	kg P eq	3,88	0,47	1,82	2,95
Eutrofizzazione – marina	kg N eq	3,59	0,53	1,90	3,12
Trasformazione del terreno	Indice di Qualità del Suolo (pt)	11,1	0,47	5,22	8,42
Ecotossicità – ambiente acquatico acqua dolce	CTUe	-	-	-	-
Impoverimento delle risorse – acqua	m3 world eq	11,89	0,47	5,59	9,03
Impoverimento delle risorse -fossili	MJ	9,14	0,6	5,48	8,92
Impoverimento delle risorse – minerali e metalli	kg Sb eq	8,28	0,6	4,97	8,08

⁴ NMVOC = composti organici volatili non metanici.

631	ALLEGATO V - DATI DI FOREGROUND
632	Si veda documento Allegato Tecnico RCP Foraggio.
633	
634	

ALLEGATO VI - DATI DI BACKGROUND

637 Si veda documento Allegato Tecnico RCP Foraggio

639 ALLEGATO VII - FORMULA DI ALLOCAZIONE PER I MATERIALI RICICLATI E 640 RECUPERATI (CIRCULAR FOOTPRINT)

643

L'allocazione per i materiali riciclati e recuperati viene eseguita secondo quanto previsto da questa RCP ed in conformità ai requisiti delle linee guida PFCR ver 6.3 (EU,2018).

644	ALLEGATO VIII - INFORMAZIONI DI BASE SULLE SCELTE METODOLOGICHE ATTUATE
645	DURANTE LO SVILUPPO DELLA RCP
646 647	Lo sviluppo della presente RCP è stato eseguito seguendo le scelte metodologiche descritte dalle PEFCR Guidance v6.3.
648	Le principali deviazioni metodologiche riguardano la scelta delle banche dati di default dettata dall'attuale
649	limitazione esistente in relazione all'uso delle banche dati PEF.