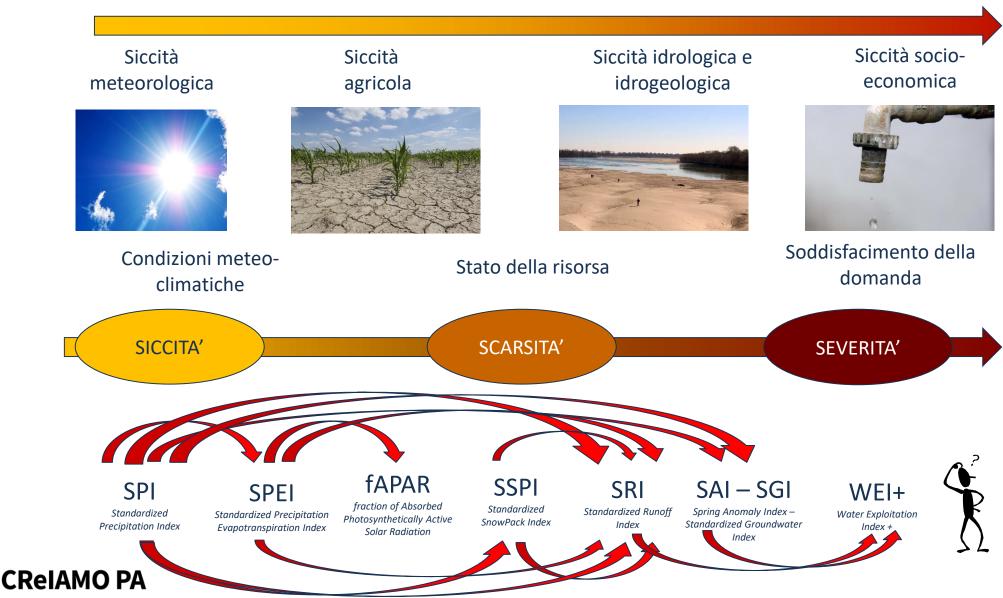


Il sistema di supporto alle decisioni **INOPIA**

Emanuele Romano, Nicolas Guyennon, Anna Bruna Petrangeli Istituto di Ricerca sulle Acque del Consiglio Nazionale delle Ricerche



SICCITA' - SCARSITA' - SEVERITA'

tempo

SEVERITA'

STATO DELLA/E RISORSA/E

SISTEMA IDRICO

SCARSITA'

CONDIZIONI **METEO-**LIMATICHE

SICCITA'

WEI+

Water Exploitation Index +

SAI – SGI

Spring Anomaly Index -Standardized Groundwater Index

SRI

SSPI

Standardized Runoff Index

Standardized SnowPack Index

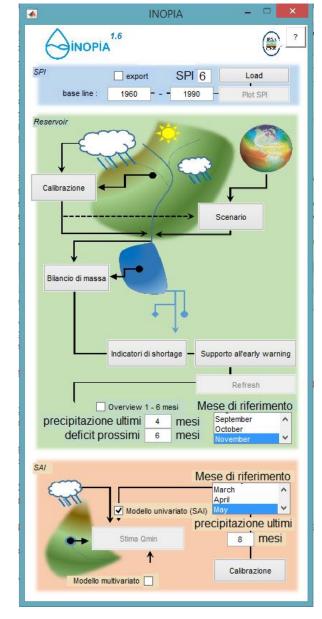
fAPAR

fraction of Absorbed Photosynthetically Active Solar Radiation

SPEI

Standardized Precipitation **Evapotranspiration Index**

SPI


Standardized **Precipitation Index**

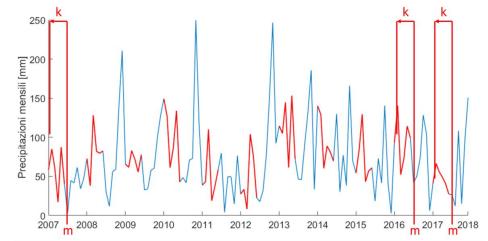
DA INOPIA A INOPIAQGIS

- ✓ INOPIA → Strumento informatico operativo di supporto alle decisioni sviluppato dall'Istituto di Ricerca sulle Acque del Consiglio Nazionale delle Ricerche, in collaborazione con il Dipartimento della Protezione Civile
- ✓ INOPIA v1.2 → prodotto finale delle attività previste nell'ambito del WP4 Metodologie per il monitoraggio della disponibilità di risorse idriche e per il preannuncio di possibili crisi idriche dell'Intesa Operativa tra l'Istituto di Ricerca sulle Acque del Consiglio Nazionale delle Ricerche e il Dipartimento della Protezione Civile siglata il 19.12.2006 a seguito dell'Accordo di Programma Quadro sottoscritto il 20.06.2006 → Insieme di cinque algoritmi che permette una valutazione immediata del rischio di shortage di un sistema di approvvigionamento idrico costituito da un invaso alimentato da un afflusso superficiale e al quale è connessa una domanda, eventualmente variabile nel tempo
- ✓ INOPIA v1.6 → strumento operativo sviluppato a partire da INOPIA v1.2 che recepisce alcune delle indicazioni delle Linee Guida sugli Indicatori di Siccità e Scarsità Idrica da utilizzare nelle attività degli osservatori distrettuali per l'uso della risorsa idrica (ISPRA-IRSA, 2018)
- ✓ INOPIA^{QGIS} → prodotto finale previsto dell'Accordo sottoscritto il 09.01.2019 tra l'Istituto di Ricerca sulle Acque del Consiglio Nazionale delle Ricerche e il Dipartimento della Protezione Civile (durata 1 anno). INOPIA^{QGIS} sarà uno strumento informatico finalizzato al preannuncio delle crisi idriche tramite una valutazione immediata del rischio di shortage di un sistema di approvvigionamento idrico complesso multi risorsa multi utenza

INOPIA v1.6

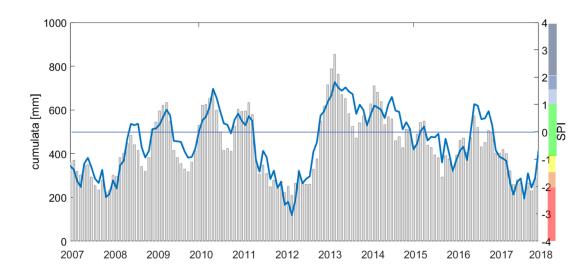
- ✓ Tool SPI → calcolo dell'SPI puntuale su una baseline scelta dall'utente.
- ✓ Tool RESERVOIR → Insieme di cinque algoritmi per la valutazione immediata del rischio di shortage di un sistema di approvvigionamento idrico costituito da un invaso alimentato da un afflusso superficiale e al qu

INOPIA v1.6 è attualmente acquisito da:

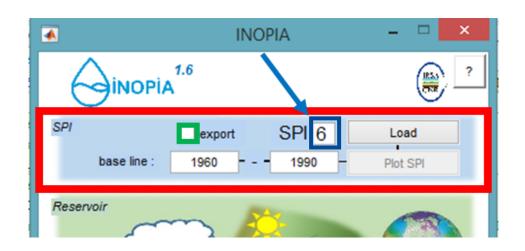

- To
 - ✓ Autorità del Distretto Idrografico dell'Appennino Centrale

per

- ✓ Autorità del Distretto Idrografico dell'Appennino Meridionale
 - ✓ Autorità di Bacino del Distretto Idrografico della Sicilia
- ✓ I diversi moduli scambiano informazioni attraverso fogli elettronici Microsoft Excel ©
- ✓ Testato su tre casi di studio: Lago Maggiore, Ridracoli (Emilia Romagna), Occhito

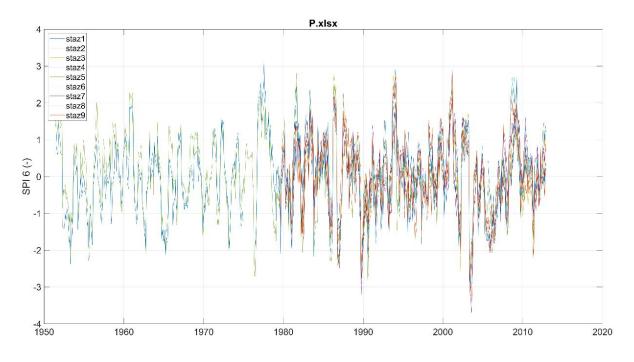

INOPIA v1.6 - Tool SPI

Standardized Precipitation Index (SPI) (McKee et al., 1993)


	Ţ	
	0.4	.5 2 2.5 3
precipitazione [mm]	SPIk(m)	
CReIAMO PA	↓	

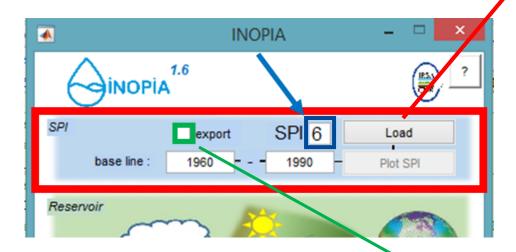
SPI ≤ -2.0	Siccità estrema
-2.0 < SPI ≤ 1.5	Siccità severa
-1.0 < SPI < 1.0	Normalità
1.0 ≤ SPI < 1.5	Umidità moderata
1.5 ≤ SPI < 2.0	Umidità severa
SPI ≥ 2.0	Umidità estrema

IL TOOL SPI (STANDARDIZED PRECIPITATION INDEX)



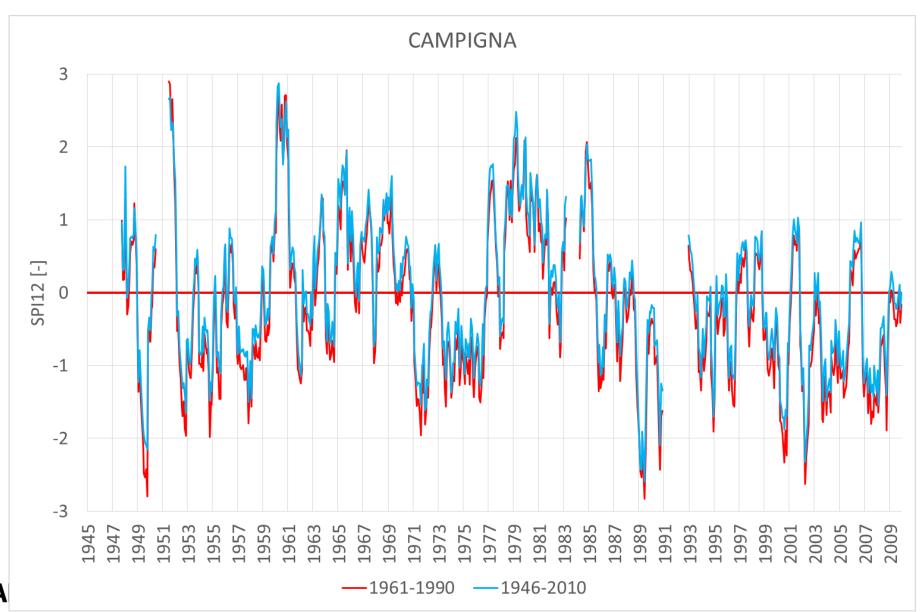
INPUT

- Foglio excel contenente i valori di precipitazione mensile per ogni stazione di interesse (da caricare mediante il pulsante Load)
- Scala temporale dell'SPI (da inserire nell'interfaccia)
- Baseline (periodo da considerare per il calcolo dei parametri di best fit)



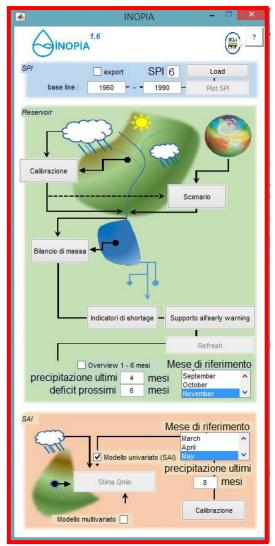
Δ	Α	В	C	D	E	F	G	Н	1	J	K
1	mese	anno	staz1	staz2	staz3	staz4	staz5	staz6	staz7	staz8	staz9
2	1	1951									
3	2	1951									
4	3	1951									
5	4	1951									
6	5	1951									
7	6	1951					2.469171			1.540986	
8	7	1951					2.218838			1.381821	
9	8	1951					1.744599			0.840065	
10	9	1951					1.275823			0.596023	
11	10	1951					1.183076			0.637032	
12	11	1951					1.785973			1.439756	
13	12	1951					1.546678			1.090951	
14	1	1952					1 671512			1 023327	

INPUT E OUTPUT DEL TOOL SPI

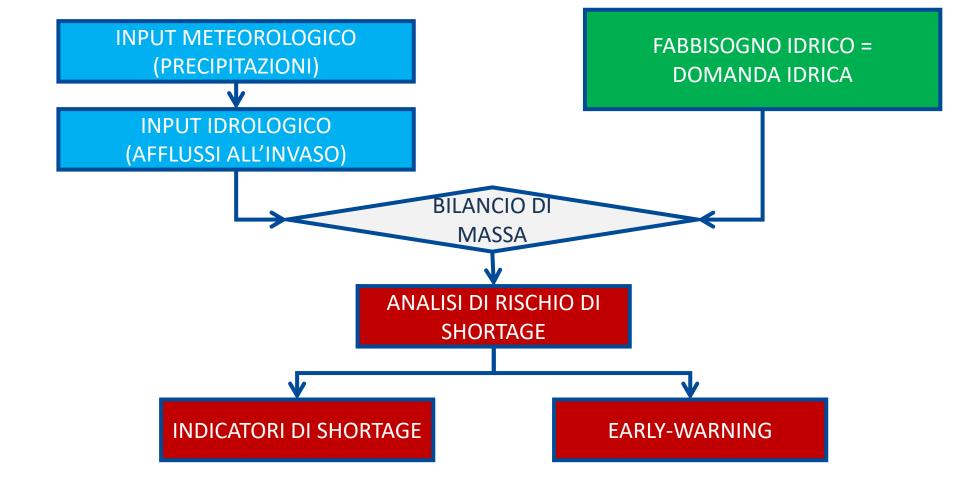

Output numerico del tool SPI

	Α	В	С	D	Е	F	G	Н	l I	J	K
1	MESE	ANNO	staz1	staz2	staz3	staz4	staz5	staz6	staz7	staz8	staz9
2	1	1951					111.7			102.8	
3	2	1951					301.2			294.2	
4	3	1951					125.8			105.4	
5	4	1951					143.8			130.4	
6	5	1951					427.8			235.4	
7	6	1951					191.1			174.2	
8	7	1951					42			54.6	
9	8	1951					261.7			184.8	
10	9	1951					73.1		<u> </u>	81.2	
11	10	1951					241.2			180.4	
12	11	1951					658.5			491	
13	12	1951					7.5			7.8	
14	1	1952					27.6			13	
15	2	1952					3.2			1	
16	3	1952					36.6			24.2	
		****					202.5				

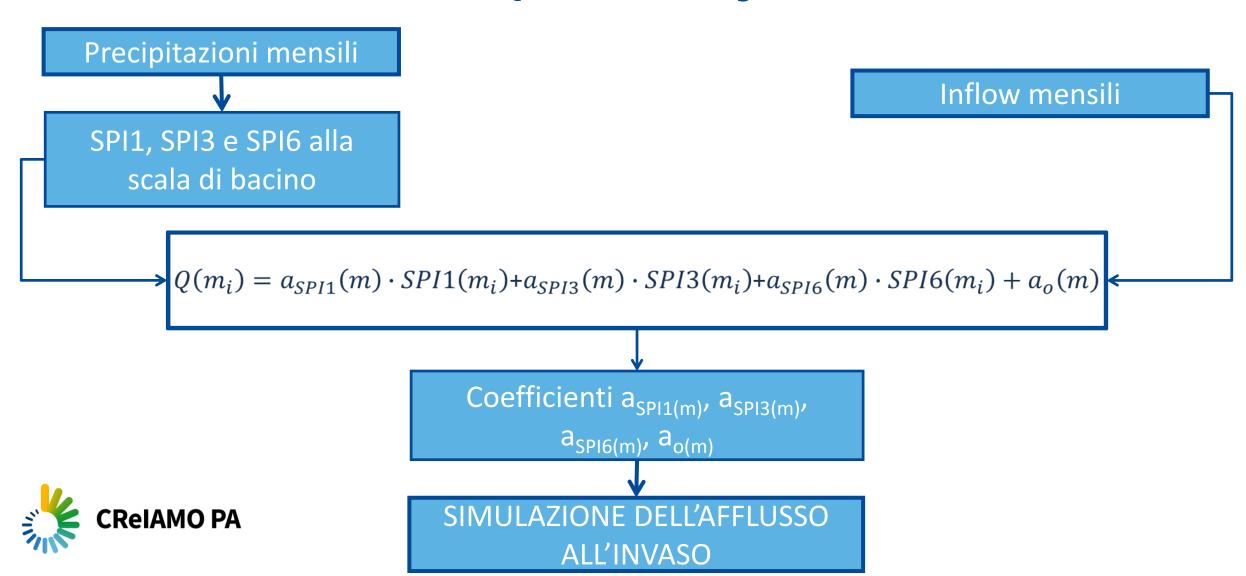
se 1 2 3 4	anno 1951 1951 1951		staz2	staz3	staz4	staz5	staz6	staz7	staz8	staz9
2	1951									
3										
	1951									
4										
	1951									
5	1951									
6	1951					2.469171			1.540986	
7	1951					2.218838			1.381821	
8	1951					1.744599			0.840065	
9	1951					1.275823			0.596023	
10	1951					1.183076			0.637032	
11	1951					1.785973			1.439756	
12	1951					1.546678			1.090951	
1	1952					1 671512			1 023327	
	6 7 8 9 10 11	6 1951 7 1951 8 1951 9 1951 10 1951 11 1951 12 1951 1 1952	6 1951 7 1951 8 1951 9 1951 10 1951 11 1951 12 1951 1 1952	6 1951 7 1951 8 1951 9 1951 10 1951 11 1951 12 1951 1 1952	6 1951 7 1951 8 1951 9 1951 10 1951 11 1951 12 1951 1 1952	6 1951 7 1951 8 1951 9 1951 10 1951 11 1951 12 1951 1 1952	6 1951 2.469171 7 1951 2.218838 8 1951 1.744599 9 1951 1.275823 10 1951 1.183076 11 1951 1.785973 12 1951 1.546678 1 1952 1.671512	6 1951 2.469171 7 1951 2.218838 8 1951 1.744599 9 1951 1.275823 10 1951 1.183076 11 1951 1.785973 12 1951 1.546678 1 1952 1.671512	6 1951 2.469171 7 1951 2.218838 8 1951 1.744599 9 1951 1.275823 10 1951 1.183076 11 1951 1.785973 12 1951 1.546678 1 1952	6 1951 2.469171 1.540986 7 1951 2.218838 1.381821 8 1951 1.744599 0.840065 9 1951 1.275823 0.596023 10 1951 1.183076 0.637032 11 1951 1.785973 1.439756 12 1951 1.546678 1.090951 1 1952 1.671512 1.023327



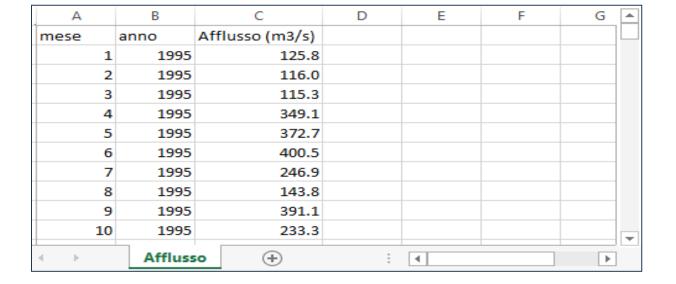
SCELTA DELLA BASELINE NEL CALCOLO DELLO SPI



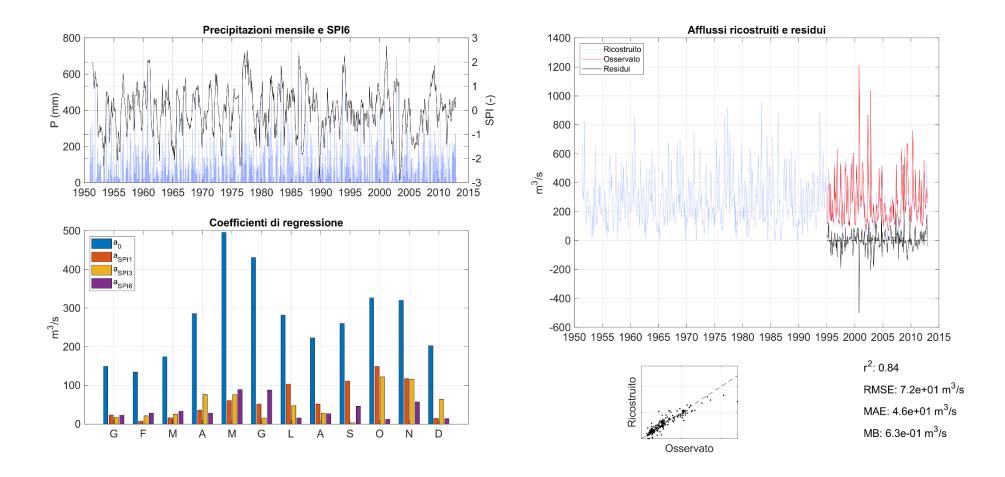
INOPIA v1.6 - Tool RESERVOIR


OBIETTIVO → a) calcolo di indici di vulnerabilità del sistema a condizioni di shortage (mancato soddisfacimento della domanda) b) individuazione di indicatori precoci (SPI – volume invasato) di shortage (mancato soddisfacimento della domanda)

TOOL RESERVOIR - MODULO CALIBRAZIONE -


MODELLO SPI-Q - Modello di regressione multilineare

INPUT NUMERICO DEL MODULO CALIBRAZIONE


Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	•
mese	anno	stazione 1	stazione 2	stazione 3	stazione 4	stazione 5	stazione 6	stazione 7	stazione 8	stazione 9	stazione 10	stazione 11	stazione 12	stazione 13	stazione 14		
1	1989	0			2.4	0	0	0	0	0	0	0	0.2	2.2	0		
2	1989	167.9			3.4	158.7	152.2	129.5	123.8	155.7	95.7	144	123.5	2.4	130		
3	1989	46.7		29.8	63	44.6	57.8	34	30.7	45.9	42.4	42.8	44.1	38.6	16		
4	1989	660.6		574.8	105	471.6	431.2	454.4	375	582.2	362.3	490.2	325.3		552		
5	1989	36.1		53.4	48.6	90.7	51.2	127.6	92.7	165.2	69.9	55.3	40	85.6	38		
6	1989	37.7		23.4	25.2	76.3	78.8	119.5	103.7	120.7	100	49.3	65.1	94.4	28		
7	1989	74.9		71		181.5	77.9	81	52.9	95	71	94.4	67.5		63.6		
8	1989	51.7		41.2		116.6	37.9	75.5	72.7	102.4	37.7	33.4	59.5		54.4		
9	1989	31 <u>8</u>		24	46.4	57 1	40.6	36.6	46 9	42.3	34.1	18.6	56.3		46.8		
← →	Precip	itazione	(+)							: 4						•	

AFFLUSSI

OUTPUT GRAFICO DEL MODULO CALIBRAZIONE

OBIETTIVO → calibrazione del modello SPI-Q (stima dei coefficienti della regressione multilineare)

OUTPUT NUMERICO DEL MODULO CALIBRAZIONE

SPI3 e SPI6 utilizzati per la calibrazione SPI1,

Δ	В	С	D	F	
A	D			_	Ļ
mese	anno	SPI 1mont	SPI 3mont	SPI 6mont	h
1	1951	0.885706			
2	1951	3.255286			
3	1951	0.192873	2.72302		
4	1951	-0.04602	1.19104		
5	1951	1.180359	0.697781		
6	1951	0.427406	0.974689	2.636808	
7	1951	-0.53654	1.024055	1.963643	
8	1951	0.806558	0.632861	1.197607	
9	1951	-0.32474	-0.05624	0.687955	
10	1951	0.058754	0.152513	0.701417	
11	1951	3.196804	1.682404	1.964868	
12	1951	-0.5511	1.888638	1.381694	
1	1952	-0.41084	2.110528	1.397603	
2	1952	-0.80576	-0.88449	0.809427	
← →	. Precipi	tation SPI	Regres	sior (-	Ð

D

Q(m3/s)

mese

Afflussi ricostruiti

anno

10

1951

1951

1951

1951

1951

1951 916.3007

1951 344,2837

1951 332.363

1951 253.0396

1951 350.4866

1951 1157.267

1951 311.0841

1952 133.2541

Reconstructed Discharge

regressione stimati Coefficienti di

osservati

Afflussi

Α	В	С	D	E
	a0	SPI 1mont	SPI 3mont	SPI 6mont
Jan	150.6725	46.32767	19.04923	25.44954
Feb	133.6166	-0.41731	28.35538	30.1217
Mar	170.3998	40.74927	18.39586	25.40311
Apr	282.0162	97.74418	117.0385	12.71472
May	494.0042	89.01629	80.93433	176.1474
Jun	434.8964	48.01208	26.20908	165.1004
Jul	293.8882	118.5202	21.04087	47.07552
Aug	229.9906	52.06576	28.7786	35.20812
Sep	277.9451	169.2528	-0.18737	43.67653
Oct	331.7216	331.1377	93.47116	-21.3086
Nov	306.1781	188.1025	81.30473	57.49749
Dec	197.74	42.51726	73.56745	-1.56835

Q(m3/s) nese anno 1995 125.8133 1995 115.9633 1995 115.2633 1995 349.14 1995 372.6833 400.48 246.91 1995 1995 143.8033 391.05 1995 10 1995 233.28 11 1995 138.4267 12 1995 144.9533 1996 279.5733 160.63 **Observed Discharge**

calibrazione simulato) Residui della (osservato

Parametri di best fit stimati per

degli SPI (n stazioni

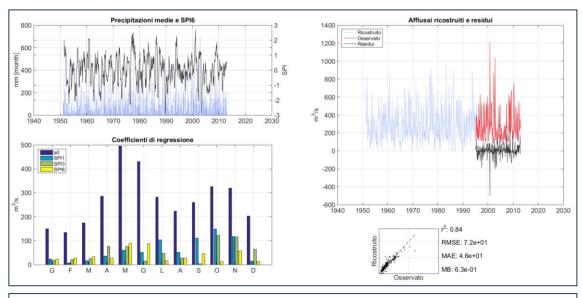
il calcolo

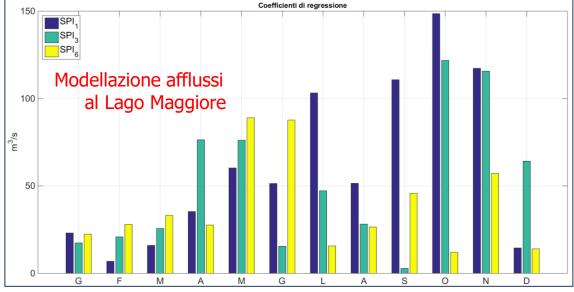
2 mesi x m parametri)

Α	В	С	
mese	anno	Q(m3/s)	
1	1995	40.22144	
2	1995	17.48563	
3	1995	19.28484	
4	1995	27.53641	
5	1995	120.8364	
6	1995	-2.28335	
7	1995	-9.77009	
8	1995	16.59648	
9	1995	-54.3834	
10	1995	-126.375	
11	1995	56.49184	
12	1995	-8.63275	
1	1996	-78.1467	
2	1996	-21.2072	
← →	. Discha	rge residue	25

92.235
184.7
367.15
368.00
255.05
222.89
257.3
430.4
404.79
321.24
123.8
470.2
273.76
313.56
542.49
760.72
832.80
743.
658.62
789.78
966.31
986.75
724.00
+

111.6152	96.4112	94.45286	54.56309
92.23575	63.29356	116.2515	63.94911
184.702	78.01135	139.7384	94.84731
367.1585	180.1455	218.8027	150.9789
368.0052	213.5332	230.6175	173.1371
255.0543	178.4083	162.4638	174.8781
222.8928	122.3869	110.4609	150.2019
257.313	141.3066	158.192	177.6438
430.457	200.5993	191.5109	201.2863
404.7977	156.7575	256.2932	179.1214
321.2441	242.187	227.7945	79.00492
123.867	97.45806	116.4948	55.79127
470.283	369.1523	369.6695	161.9601
273.7633	212.7407	262.9314	140.7024
313.5602	178.3978	286.3001	189.3868
542.4972	278.3471	381.9856	271.7505
760.7255	399.002	498.7574	368.6722
832.8022	487.6687	513.4027	410.9704
743.22	460.8731	446.5108	447.0085
658.6228	406.0503	385.9785	460.4996
789.7834	421.2335	395.2504	480.7026
966.3111	460.2584	541.3796	484.8601
986.7579	499.3787	546.8976	384.2363
724 0004	407.0110	407 5044	200 4642
← →	. Precipi	tation SPI	Regress


Tutti i fogli sono contenuti cui nome dall'utente excel il in un file



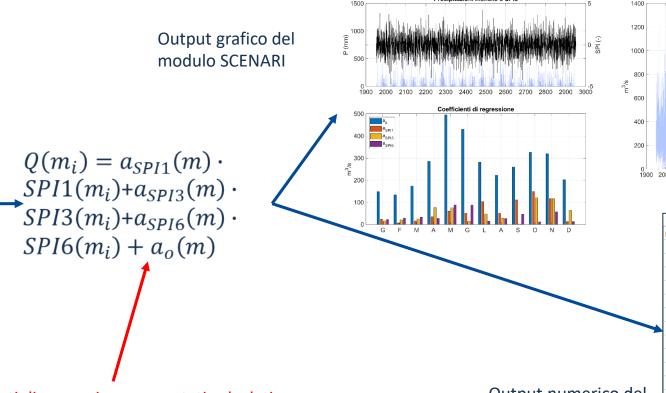
IL SIGNIFICATO FISICO DEI COEFFICIENTI DELLA REGRESSIONE MULTILINEARE

- Le precipitazioni mensili (SPI1) sono rappresentative del run-off e quindi dell'afflusso diretto ai corsi d'acqua superficiali che alimentano il lago.
- Le precipitazioni cumulate su 3 mesi (SPI3) sono rappresentative delle condizioni di imbibizione del suolo e quindi della ripartizione della precipitazione tra deflusso superficiale e deflusso sub-superficiale.
- Le precipitazioni cumulate su 6 mesi (SPI6) sono rappresentative dei processi di alimentazione caratterizzati da tempi lunghi (plurimensili), quali in particolare lo scioglimento del manto nevoso nel periodo primaverile e il deflusso subsuperficiale.
- La variabilità del deflusso a scale temporali
 superiori non viene considerata

CReIAMO PA

TOOL RESERVOIR - MODULO SCENARI

Basato sull'idea che l'interazione atmosfera/suolo/sotto-suolo del bacino idrografico che determina la risposta del bacino alle precipitazioni sia invariante nel tempo e dunque indipendente dal regime di precipitazione considerato INPUT


1) serie temporale di precipitazioni mensili (serie stocastiche, scenari di climate change, previsioni meteo di medio periodo, ecc) sulle stesse stazioni utilizzate nel modulo CALIBRAZIONE. 2) output dal modulo CALIBRAZIONE

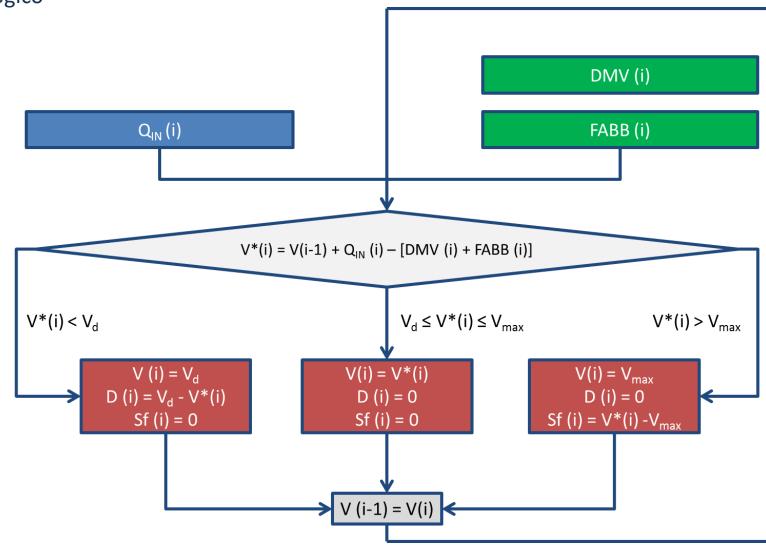
OUTPUT

scenari di afflusso all'invaso alla scala mensile

Α	В	С	D	Е	
mese	anno	nodo 1	nodo 2	nodo 3	n
1	1950	303.7147	269.9446	228.8485	
2	1950	142.0203	80.26011	191.7033	
3	1950	87.75271	24.7479	65.32534	
4	1950	143.5083	94.24644	85.1453	
5	1950	283.8128	160.306	184.1392	
6	1950	238.7251	201.1586	162.9933	
7	1950	329.5078	199.2308	159.482	
8	1950	343.4199	189.5674	212.8788	
9	1950	203.6418	135.7	71.37129	
10	1950	401.8578	256.4743	239.1439	
11	1950	66.6463	77.60486	55.41079	
12	1950	334.1323	233.7571	295.8667	
1	1951	1.016151	1.8	0.2	
2	1951	139.8467	80.07624	183.9801	
\leftarrow	Precipi	tazione	(+)		

Input del modulo scenari

CReIAMO PA


I coefficienti di regressione sono stati calcolati nel modulo CALIBRAZIONE Output numerico del modulo SCENARI

TOOL RESERVOIR - MODULO BILANCIO DI MASSA

Simula l'evoluzione nel tempo dei volumi immagazzinati in un invaso, naturale o artificiale. Esso è basato sul bilancio di massa (volumi) calcolato considerando come dati di input l'afflusso, la domanda connessa con l'invaso e l'eventuale rilascio atto a garantire un il Deflusso Ecologico

INPUT→ 1) dati relativi all'invaso (volume massimo, volume morto, eventuale curva livelli-volumi invasati). 2) fabbisogno mensile o serie storica dei fabbisogni indirizzati all'invaso. 3) Deflusso ecologico variabile alla scala mensile. 4) serie temporale di afflussi all'invaso (dal modulo CALIBRAZIONE o dal modulo SCENARI)

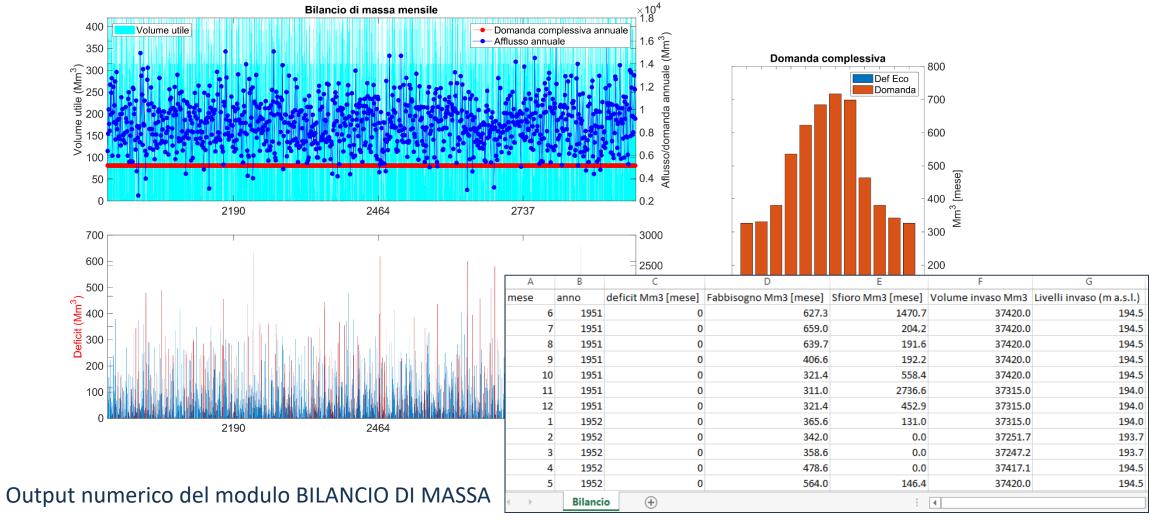
INPUT MODULO BILANCIO DI MASSA

Dati relativi all'invaso

	А	В	С	D	Е	F	G	Н		J	K	L	M
1		gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembre
2	Volume max (Mm3)	37315	37315	37420	37420	37420	37420	37420	37420	37420	37420	37315	37315
3	Volume morto (Mm3)	37000	37000	37000	37000	37000	37000	37000	37000	37000	37000	37000	37000
4	Domanda (m3/s)	100	110	120	184.64	210.57	242.03	246.04	238.83	156.88	120	110	100
5	Deflusso Ecologico (m3/s)	22	22	22	22	22	22	22	22	22	22	22	22
6	Volume iniziale (Mm3)	37200											
7													

Fabbisogni indirizzati all'invaso variabili alla scala mensile

Relazione livelli-volumi invasati (input facoltativo)


Α		В	
m (s.l.m.)		Volume	(Mm3)
	194.5	3	7420
	194	3	7315
	192.5	3	7000
← •	invaso	livelli	domar

Α	В	С	D	Е
mese	anno	Domanda (m3/s)		
1	1994	141.1		
2	1994	127.4		
3	1994	138.4		
4	1994	184.6		
5	1994	217.6		
6	1994	242.0		
7	1994	254.2		
4 →	invaso	livelli doma	nda osserv	ata

Domanda mensile osservata (input facoltativo)

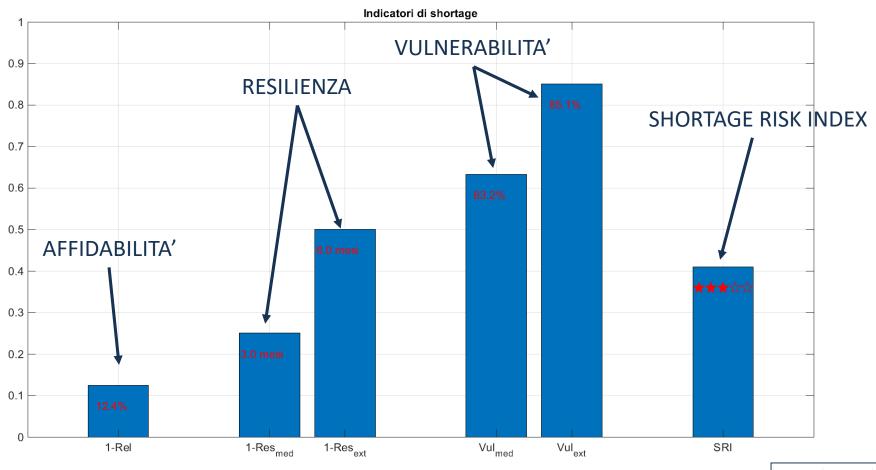
OUTPUT MODULO BILANCIO DI MASSA

OBIETTIVO → calcolo della serie «storica» di deficit e sfiori sulla base della serie «storica» di afflussi ricostruita dal modello SPI-Q (da modulo *CALIBRAZIONE* o modulo *SCENARI*)

INOPIA E' UN SISTEMA MODULARE → SE E' GIA' DISPONIBILE UNA MODELLISTICA (AD ESEMPIO FISICAMENTE BASATA E/O PIU' PERFORMANTE DEL MODELLO SPI-Q, E' POSSIBILE UTILIZZARLA PER PRODURRE L'INPUT DI AFFLUSSO AL MODULO BILANCIO DI MASSA

MODULO INDICATORI DI SHORTAGE

Gli indicatori di shortage rappresentano un insieme statistico sviluppato per descrivere gli eventi di shortage (o deficit), ossia la condizione nella quale il volume idrico immagazzinato nell'invaso non è sufficiente a garantire il soddisfacimento della domanda


$$Rel = Reliability = \frac{n_S}{T}$$

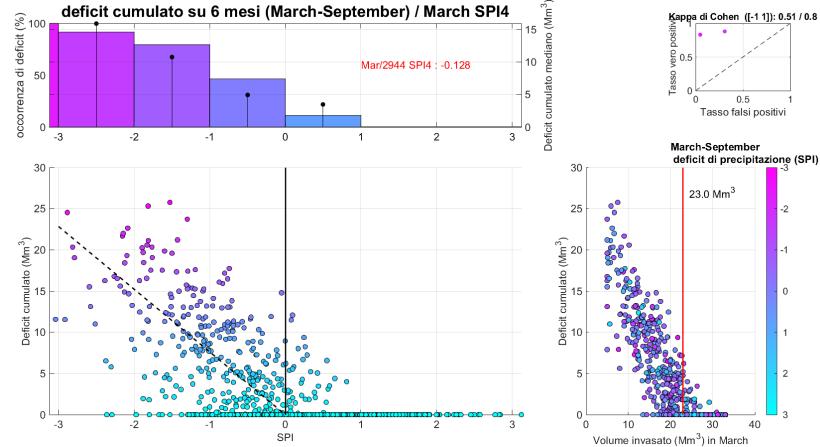
$$Shortage\ Risk\ Index = SRI$$

$$= \frac{1}{3}(1 - Rel) + \frac{1}{6}(1 - Res_{med}) + \frac{1}{6}(1 - Res_{ext}) + \frac{1}{6}Vul_{med} + \frac{1}{6}Vul_{ext}$$

$$Vul_{ext} = Extreme\ Vulnerability = perc_{90}\left\{\frac{\sum_{j=1}^{m_f(i)}WD_{j(i)}}{\sum_{j=1}^{m_f(i)}Wd_{j(i)}}\right\}_{i=1,\dots,N_f}$$



OUTPUT MODULO INDICATORI DI SHORTAGE



Output numerico del modulo INDICATORI DI SHORTAGE

MODULO SUPPORTO ALL' EARLY WARNING

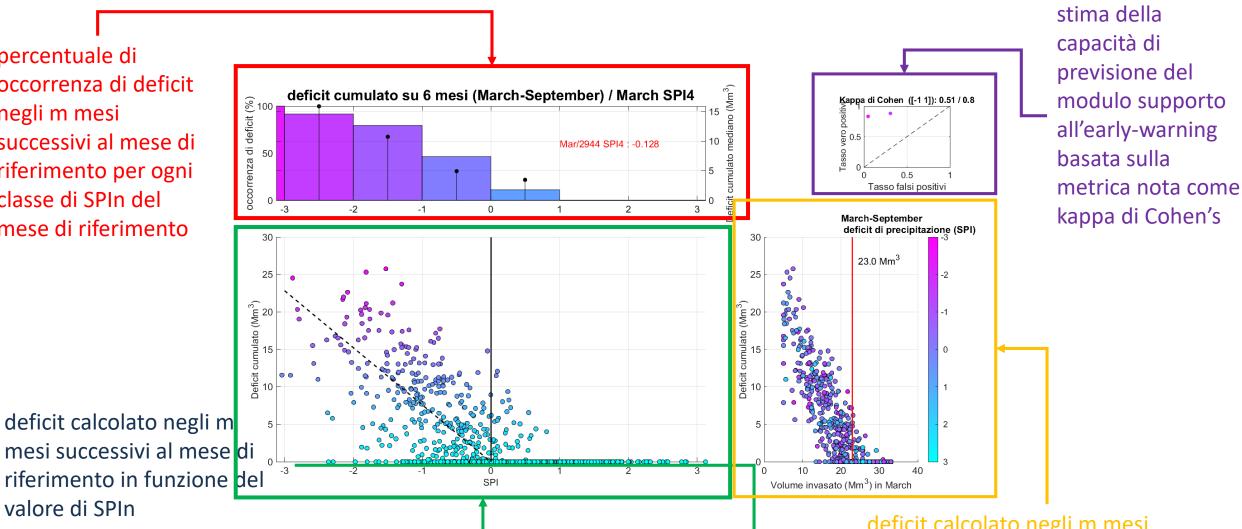
- 1. Considerate le precipitazioni degli ultimi X mesi (in relazione a quelle medie osservate), con quale probabilità si verificheranno condizioni di deficit nei prossimi Y mesi?
- 2. Considerato il volume attualmente invasato, con quale probabilità si verificheranno condizioni di deficit nei prossimi Y mesi?

File precipitazioni

BILANCIO DI MASSA

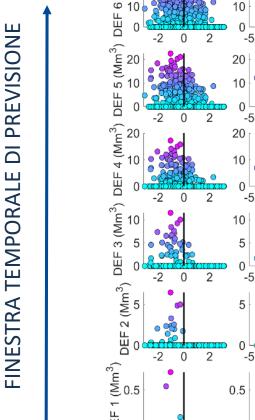
Output modulo

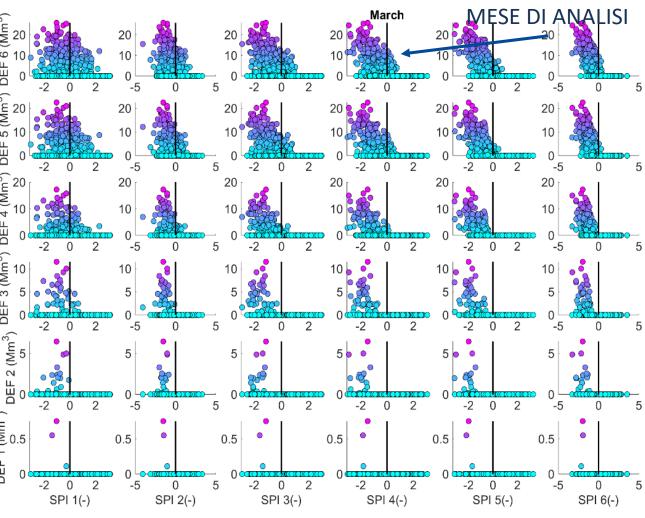
INPUT

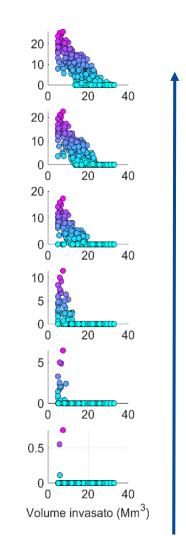

OBIETTIVO
individuazione di indicatori precoci di *shortage* mediante analisi statistica della relazione tra SPI pregressi e deficit cumulato sugli n mesi successivi e tra volume invasato e deficit cumulato negli n mesi successivi (fissato il mese di analisi)

MODULO SUPPORTO ALL' EARLY WARNING

percentuale di occorrenza di deficit negli m mesi successivi al mese di riferimento per ogni classe di SPIn del mese di riferimento


valore di SPIn


CReIAMO PA

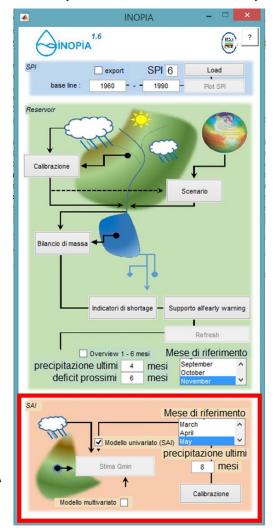


deficit calcolato negli m mesi successivi al mese di riferimento in funzione del corrispondente volume invasato nel mese di riferimento

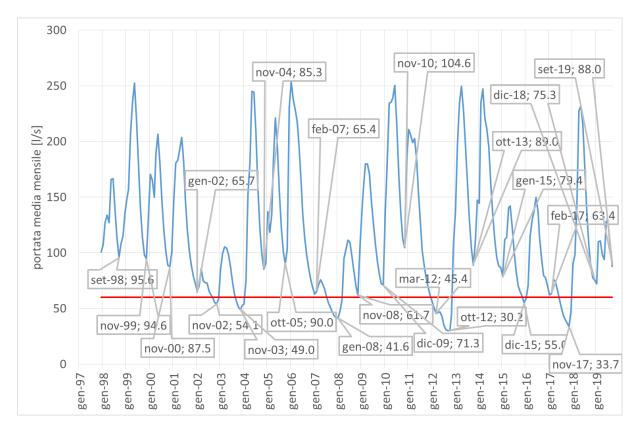
OUTPUT SUPPORTO ALL'EARLY-WARNING

DI PREVISIONE

TEMPORALE


FINESTRA

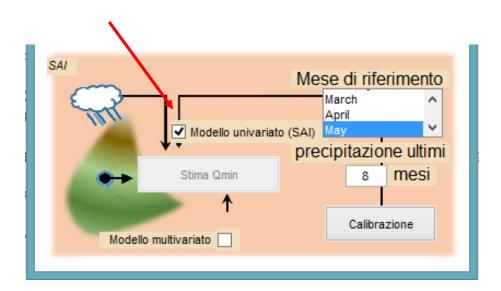
CREIAMO PA


VOLUME INVASATO NEL MESE DI ANALISI

IL TOOL SAI – SPRING ANOMALY INDEX

Il tool SAI fornisce una procedura guidata per il calcolo dello Spring Anomaly Index (Romano et al. 2013) in accordo con le Linee Guida ISPRA-IRSA sugli Indicatori di Siccità e Scarsità Idrica da utilizzare nelle attività degli osservatori distrettuali per l'uso della risorsa idrica (Mariani et al. 2018).

Il SAI è un indice di severità idrica appositamente sviluppato per le sorgenti e che quantifica la capacità di soddisfacimento fabbisogno idrico connesso con una determinata sorgente

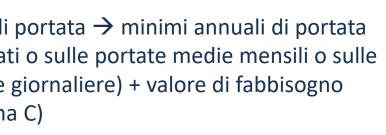

PROCEDURA PER IL CALCOLO DEL SAI

MODELLO UNIVARIATO

- 1. Si individuano la stazione o l'insieme di stazioni rappresentative delle precipitazioni sull'area di ricarica della sorgente in esame.
- 2. Si calcola per la serie di precipitazione mensile rappresentativa dell'area di ricarica della sorgente in esame lo SPI per ogni mese dell'anno e per le scale di aggregazione da 1 a 24 mesi, ottenendo così 24 serie temporali di SPI sul periodo in esame. $(SPI_n(m_a) \rightarrow SPI calcolato per il mese m dell'anno a considerando una scala di aggregazione di n mesi).$
- 3. Si individua la portata minima (sulla serie di portate giornaliere o medie mensili) di ogni anno idrologico a, Q_a^{min}
- 4. Fissato un mese di riferimento per le precipitazioni m e una scala di aggregazione n, si calcola il coefficiente di correlazione (r) tra la serie degli $SPI_n(m_a)$ e la serie dei minimi annuali Q_a^{min} .
- 5. Si costruisce la matrice di correlazione tra i valori di $SPI_n(m_a)$ e quelli di Q_a^{min} .
- 6. Si calcola la retta di regressione $Q_{min} = \alpha \cdot SPI_n(m) + \beta$ per la combinazione tra scala dell'SPI n e mese di riferimento m che presenta la massima correlazione $SPI_n(m_a) Q_a^{min}$. $(\bar{n}, \bar{m} \rightarrow \text{combinazione che presenta massima correlazione})$
- 7. Si considera la retta di regressione calcolata al punto 6 e il valore di $SPI_{\bar{n}}(\bar{m})$ dell'anno corrente. Sulla base dei coefficienti della retta di regressione si calcola la portata minima prevista per l'anno corrente, indicata con $Q_{\text{f.or.ecast}}^{min}$.
- 8. Si calcola l'indice SAI come lo scostamento percentuale della domanda Ds rispetto alla portata minima prevista $Q_{ ext{forecast'}}^{min}$ valutando la severità idrica puntuale per l'anno idrologico corrente secondo quanto riportato in Tabella 4.1.

MODELLO UNIVARIATO

Input di precipitazione → precipitazioni mensili osservate nelle stazioni considerate rappresentative del regime pluviometrico dell'area di ricarica della sorgente

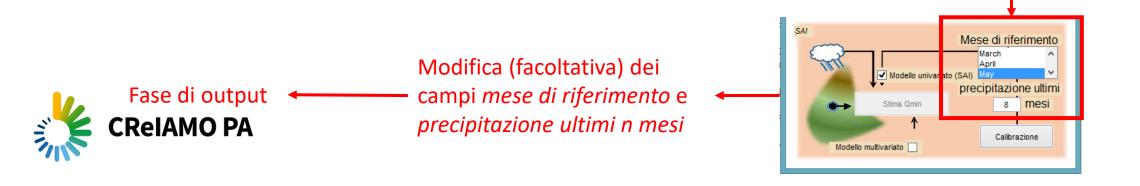

Α	В	С	D	E	F	G	H	I	J	K	L	M	N	0	P	Q
mese	anno	stazione 1	stazione 2	stazione 3	stazione 4	stazione 5	stazione 6	stazione 7	stazione 8	stazione 9	stazione 10	stazione 11	stazione 12	stazione 13	stazione 14	
1	1989	0			2.4	0	0	0	0	0	0	0	0.2	2.2	. 0	
2	1989	167.9			3.4	158.7	152.2	129.5	123.8	155.7	95.7	144	123.5	2.4	130	
3	1989	46.7		29.8	63	44.6	57.8	34	30.7	45.9	42.4	42.8	44.1	38.6	16	
4	1989	660.6		574.8	105	471.6	431.2	454.4	375	582.2	362.3	490.2	325.3		552	
5	1989	36.1		53.4	48.6	90.7	51.2	127.6	92.7	165.2	69.9	55.3	40	85.6	38	
6	1989	37.7		23.4	25.2	76.3	78.8	119.5	103.7	120.7	100	49.3	65.1	94.4	28	
7	1989	74.9		71		181.5	77.9	81	52.9	95	71	94.4	67.5		63.6	
8	1989	51.7		41.2		116.6	37.9	75.5	72.7	102.4	37.7	33.4	59.5		54.4	
q	1989	31,8		24	46.4	57 1	40.6	36.6	46.9	42.3	34.1	18.6	56.3		46.8	
()-	Precip	itazione	(+)							: 1						F

2001 65,73548

2014 79.40935 2016 62.3671

Afflusso

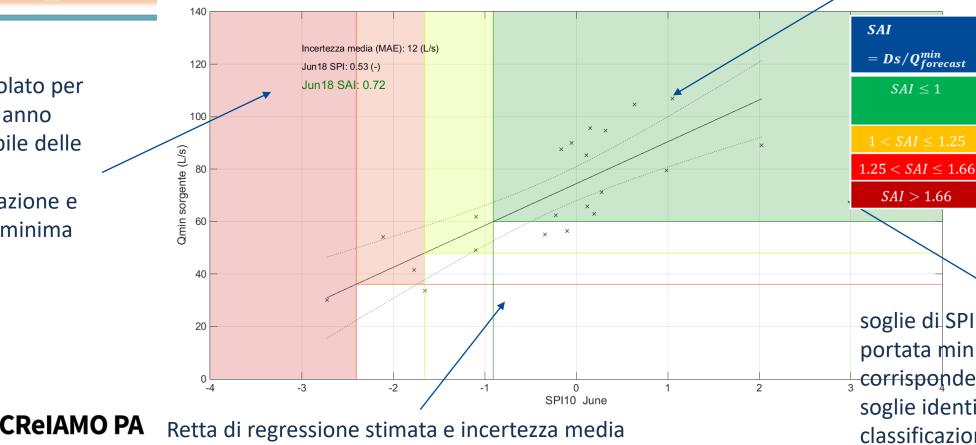
Input di portata → minimi annuali di portata (calcolati o sulle portate medie mensili o sulle portate giornaliere) + valore di fabbisogno (colonna C)



PROCEDURA OPERATIVA PER IL CALCOLO DEL SAI

MODELLO UNIVARIATO

Il tool identifica per quale coppia $SPI_n(m)$, Q^{min} si ha il massimo del coefficiente di correlazione e utilizza tali valori per completare, di default i campi *mese di riferimento* e *precipitazione ultimi n mesi*


MODELLO UNIVARIATO

Premere sul pulsante Stima Qmin x = valori delle portate minime annuali osservate in funzione degli $SPI_n(m)$ calcolati per il mese m e la scala di aggregazione dell'SPI scelti con i campi mese di riferimento e precipitazione ultimi n mesi

 $SAI \leq 1$

SAI calcolato per l'ultimo anno disponibile delle serie di precipitazione e portata minima annuale

soglie di SPI e relativi valori di portata minima della sorgente, corrispondenti alle quattro soglie identificate per la classificazione del SAI

CLASSIFICAZIONE DI

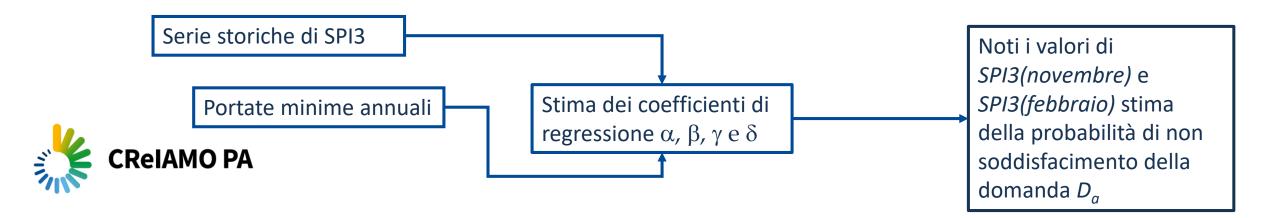
SEVERITA'

Assenza di condizioni di

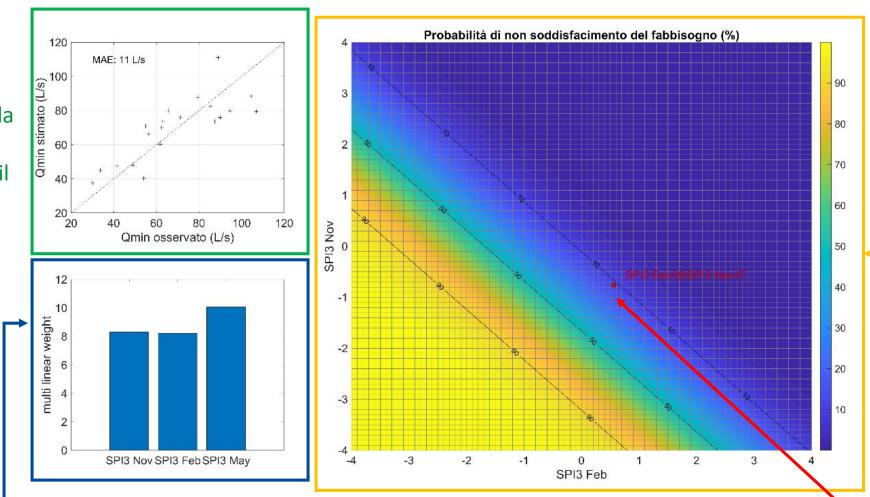
severità idrica puntuale

Media

Elevata


espressa mediante Mean Absolute Error (MAE)

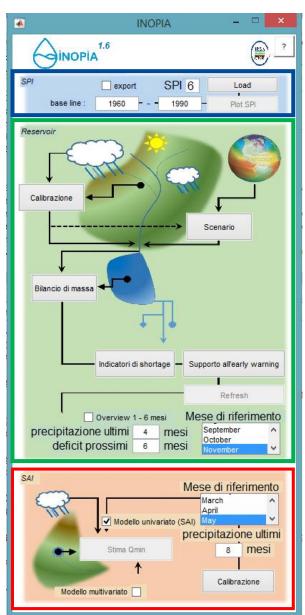
MODELLO MULTIVARIATO

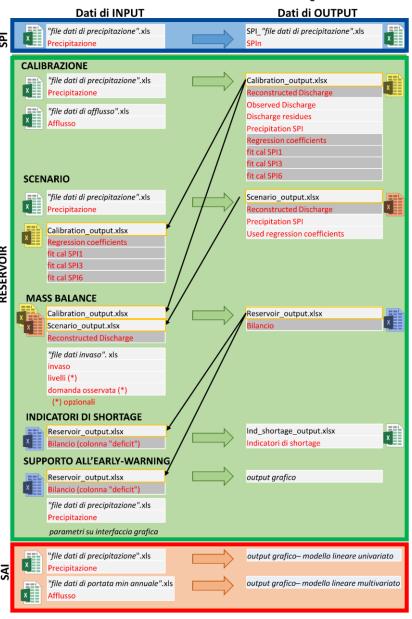

 $Q_{min} = \alpha \cdot SPI3(novembre) + \beta \cdot SPI3(febbraio) + \gamma \cdot SPI3(maggio) + \delta$

- Coefficienti di regressione multilineare α , β e γ \rightarrow "peso" che l'anomalia di precipitazione di ciascuna stagione ha sulla variabilità inter-annuale delle portate minime.
- Termine noto $\delta \rightarrow$ portata minima annuale prevista nel caso in cui il regime di precipitazione sia esattamente pari alla media di lungo periodo (quindi caratterizzato dalla condizione SPI3(novembre) = SPI3(febbraio) = SPI3(maggio) = 0

MODELLO MULTIVARIATO

Regressione tra minimi annuali di portata osservati e simulati. Bontà della simulazione viene valutata mediante il Mean Absolute Error (MAE)


probabilità di non soddisfacimento del fabbisogno stimata per ogni coppia di valori di [SPI3(novembre), SPI3(febbraio)].



Coefficienti del modello multiregressivo calibrato → peso che ciascuna delle cumulate stagionali ha sulla portata minima annuale

[SPI3(novembre), SPI3(febbraio)] per l'ultimo anno disponibile delle serie di precipitazione e portata minima annuale

INOPIA V1.6 – OVERVIEW DEI DATI I/O

Email: romano@irsa.cnr.it; guyennon@irsa.cnr.it

